Câu hỏi:

11/07/2024 868

Cho nửa đường tròn (O) đường kính AB = 2R. Điểm C (khác A) bất kì nằm trên nửa đường tròn sao cho AC < CB. Điểm D thuộc cung nhỏ BC sao cho COD = 90o. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.

a) Chứng minh CEDF là tứ giác nội tiếp.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh CEDF là tứ giác nội tiếp. (ảnh 1)

Ta có ACB = ADB = 90o  (góc nội tiếp chắn nửa đường tròn)

=> FCE = FDE = 90o.

Tứ giác CEDF có FCE + FDE = 180o => CEDF là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A O). Lấy điểm E trên cung nhỏ BC ( E khác B C ), AE cắt CD tại F. Chứng minh BEFI là tứ giác nội tiếp đường tròn.

Xem đáp án » 12/07/2024 3,626

Câu 2:

Cho tam giác ABC và đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Đường tròn ngoại tiếp tam giác BHM cắt đường tròn ngoại tiếp tam giác CNH tại E. Chứng minh AMEN là tứ giác nội tiếp và HE đi qua trung điểm của MN.

Xem đáp án » 11/07/2024 3,017

Câu 3:

c) Gọi I là trung điểm của EF. Chứng minh IC là tiếp tuyến của (O).

Xem đáp án » 11/07/2024 2,836

Câu 4:

Chứng minh FC.FA = FB.FD.

Xem đáp án » 13/07/2024 1,979

Câu 5:

d) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào?

Xem đáp án » 11/07/2024 841

Bình luận


Bình luận