Câu hỏi:

13/07/2024 1,745

Hãy chứng minh rằng tích của hai số nguyên tố là một hợp số.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tích của hai số nguyên tố giống nhau p.p có ba ước là 1,p  p2 . Tích của hai số nguyên tố khác nhau p1.p2   có bốn ước là 1,p1,p2   và p1.p2

Vậy tích của hai số nguyên tố là một hợp số.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n+1 hoặc  4n-1.

Xem đáp án » 13/07/2024 3,985

Câu 2:

Cho p và p+2 là các số nguyên tố (p>3). Chứng minh rằng p+16.

Xem đáp án » 13/07/2024 3,427

Câu 3:

Tổng của 2 số nguyên tố có thể bằng 2003 hay không? Vì sao?

Xem đáp án » 13/07/2024 1,765

Câu 4:

Các khẳng định sau đúng hay sai ?

A. Mọi số nguyên tố đều là số lẻ.

B. Không có số nguyên tố nào có chữ số hàng đơn vị là 5.

C. Không có số nguyên tố lớn hơn 5 nào có chữ sô tận cùng là 0, 2, 4, 5, 6, 8.

Xem đáp án » 12/07/2024 1,607

Câu 5:

Có bao nhiêu số nguyên tố có hai chữ số mà chữ số hàng đơn vị là 1?

Xem đáp án » 29/09/2022 1,506

Câu 6:

c) 5.7+11.13.17

Xem đáp án » 13/07/2024 1,401
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua