Câu hỏi:
31/01/2025 4,571Cho hàm số f(x)={ax2+bxkhix≥12x−1khix<1. Tìm a, b để hàm số có đạo hàm tại x = 1.
Quảng cáo
Trả lời:
lim
\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \left( {{\rm{2x}} - 1} \right) = 1
Để hàm số liên tục tại x = 1 thì \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right){\rm{ = f}}\left( {\rm{1}} \right) \Leftrightarrow {\rm{a + b = 1}}\,\,\,\left( {\rm{1}} \right)
Khi đó ta có: {\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}}
\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}\left( {{{\rm{x}}^{\rm{2}}} - {\rm{1}}} \right){\rm{ + b}}\left( {{\rm{x}} - {\rm{1}}} \right)}}{{{\rm{x}} - {\rm{1}}}}
= \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \left[ {{\rm{a}}\left( {{\rm{x + 1}}} \right){\rm{ + b}}} \right] = {\rm{2a + b}}
\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{\rm{2x}} - {\rm{1}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{2{\rm{x}} - 2}}{{{\rm{x}} - 1}} = 2
Để hàm số có đạo hàm tại x = 1 thì
{\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} \Leftrightarrow {\rm{2a + b}} = 2\,\,\,\left( 2 \right)
Từ (1) và (2) ta có hệ: \left\{ {\begin{array}{*{20}{c}}{a + b = 1}\\{2a + b = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 0}\end{array}} \right.} \right.
Đáp án cần chọn là: C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm a để hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1}\\{a\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1}\end{array}} \right. có đạo hàm tại x = 1.
Câu 2:
Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 1\,\,khi\,\,x \ge 0}\\{ - {x^2}\,\,khi\,\,x < 0}\end{array}} \right.. Khẳng định nào sau đây sai?
Câu 3:
Tìm a, b để hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} + 1}}{{x + 1}}\,\,khi\,x \ge 0}\\{ax + b\,\,khi\,x < 0}\end{array}} \right. có đạo hàm tại điểm x = 0.
</>
Câu 4:
Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}{\frac{{3 - \sqrt {4 - x} }}{4}\,\,khi\,\,x \ne 0}\\{\frac{1}{4}\,\,khi\,\,x = 0}\end{array}} \right.. Tính f′(0).
Câu 5:
Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{\sqrt x }}{x}\,\,khi\,\,x \ne 0}\\{0\,\,khi\,\,x = 0}\end{array}} \right.. Xét hai mệnh đề sau:
(I) Hàm số có đạo hàm tại {{\rm{x}}_{\rm{0}}}{\rm{ = 0}} và f′(0) = 1
(II) Hàm số không có đạo hàm tại {{\rm{x}}_{\rm{0}}}{\rm{ = 0}}.
Mệnh đề nào đúng?
Câu 6:
Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{3 - \sqrt {4 - x} \,\,khi\,\,x \ne 0}\\{1\,\,\,khi\,\,x = 0}\end{array}} \right.. Khi đó f′(0) là kết quả nào sau đây?
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận