Câu hỏi:

31/01/2025 4,571

Cho hàm số f(x)={ax2+bxkhix12x1khix<1. Tìm a, b để hàm số có đạo hàm tại x = 1.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

lim

\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \left( {{\rm{2x}} - 1} \right) = 1

Để hàm số liên tục tại x = 1 thì \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right){\rm{ = f}}\left( {\rm{1}} \right) \Leftrightarrow {\rm{a + b = 1}}\,\,\,\left( {\rm{1}} \right)

Khi đó ta có: {\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}}

\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}\left( {{{\rm{x}}^{\rm{2}}} - {\rm{1}}} \right){\rm{ + b}}\left( {{\rm{x}} - {\rm{1}}} \right)}}{{{\rm{x}} - {\rm{1}}}}

= \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \left[ {{\rm{a}}\left( {{\rm{x + 1}}} \right){\rm{ + b}}} \right] = {\rm{2a + b}}

\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{\rm{2x}} - {\rm{1}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{2{\rm{x}} - 2}}{{{\rm{x}} - 1}} = 2

Để hàm số có đạo hàm tại x = 1 thì

{\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} \Leftrightarrow {\rm{2a + b}} = 2\,\,\,\left( 2 \right)

Từ (1) và (2) ta có hệ: \left\{ {\begin{array}{*{20}{c}}{a + b = 1}\\{2a + b = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 0}\end{array}} \right.} \right.

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm a để hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1}\\{a\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1}\end{array}} \right. có đạo hàm tại x = 1.

Xem đáp án » 31/01/2025 2,635

Câu 2:

Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 1\,\,khi\,\,x \ge 0}\\{ - {x^2}\,\,khi\,\,x < 0}\end{array}} \right.. Khẳng định nào sau đây sai?

Xem đáp án » 31/01/2025 1,575

Câu 3:

Tìm a, b để hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} + 1}}{{x + 1}}\,\,khi\,x \ge 0}\\{ax + b\,\,khi\,x < 0}\end{array}} \right. có đạo hàm tại điểm x = 0.

</>

Xem đáp án » 31/01/2025 938

Câu 4:

Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}{\frac{{3 - \sqrt {4 - x} }}{4}\,\,khi\,\,x \ne 0}\\{\frac{1}{4}\,\,khi\,\,x = 0}\end{array}} \right.. Tính f′(0).

Xem đáp án » 31/01/2025 716

Câu 5:

Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{\sqrt x }}{x}\,\,khi\,\,x \ne 0}\\{0\,\,khi\,\,x = 0}\end{array}} \right.. Xét hai mệnh đề sau:

(I) Hàm số có đạo hàm tại {{\rm{x}}_{\rm{0}}}{\rm{ = 0}} và f′(0) = 1

(II) Hàm số không có đạo hàm tại {{\rm{x}}_{\rm{0}}}{\rm{ = 0}}.

Mệnh đề nào đúng?

Xem đáp án » 31/01/2025 660

Câu 6:

Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{3 - \sqrt {4 - x} \,\,khi\,\,x \ne 0}\\{1\,\,\,khi\,\,x = 0}\end{array}} \right.. Khi đó f′(0) là kết quả nào sau đây?

Xem đáp án » 31/01/2025 607
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua