Câu hỏi:

06/08/2020 367

Cho f(x)=2x3+x2,g(x)=3x2+x+2. Giải bất phương trình f'(x)>  g'(x)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có:

f'(x)=(2x3+x2)/=6x2+1

g'(x)=(3x2+x+2)/=6x+1

f'(x)>g'(x)6x2+1>6x+16x26x>0x(;0)(1;+)

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính  đạo hàm của hàm số y=1(x2x+1)5

Xem đáp án » 06/08/2020 8,721

Câu 2:

Cho hàm số f(x) xác định trên R bởi f(x)=2x2+1 . Giá trị f ' (-1) bằng:

Xem đáp án » 06/08/2020 7,658

Câu 3:

Cho hàm số f(x) xác định trên R bởi f(x)=x2. Giá trị f ' (0) bằng

Xem đáp án » 25/01/2021 5,643

Câu 4:

 Cho hàm số y=4x  x. Nghiệm của phương trình y’ = 0 là

Xem đáp án » 06/08/2020 4,694

Câu 5:

Tính đạo hàm của hàm số y=1+2xx2  . 

Xem đáp án » 25/01/2021 3,578

Câu 6:

Cho f(x)=2x3x2+3,g(x)=x3+x223. Giải bất phương trình f'(x)>g'(x).

Xem đáp án » 06/08/2020 1,491

Câu 7:

Tính đạo hàm của hàm số y=x2+1x.

Xem đáp án » 06/08/2020 1,424