Câu hỏi:
31/08/2020 436Tổng của tất cả các số tự nhiên n thỏa mãn 1C1n-1C2n+1=76C1n+4 là
Câu hỏi trong đề: Tổng hợp đề thi THPTQG môn Toán cực hay, có lời giải chi tiết !!
Bắt đầu thiQuảng cáo
Trả lời:
Đáp án B
ĐK: n∈ℕ*
Khi đó 1C1n-1C2n+1=76C1n+4⇔1n-1(n+1)!2!(n+1)!=76(n+4)⇔1n-2n(n+1)=76(n+4)
⇔6(n+1)(n+4)-12(n+4)=7n(n+1)⇔n2-11n+24-0⇔[n=8n=3 . Vậy n1+n2=11.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có 3 chữ số?
Câu 2:
Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30°.
Câu 3:
Có 11 chiếc thẻ được đánh số từ 1 đến 11, người ta rút ngẫu nhiên hai thẻ khác nhau. Xác suất để rút được hai thẻ mà tích hai số được đánh trên thẻ là số chẵn bằng
Câu 4:
Cho hàm số f(x) thỏa mãn đồng thời các điều kiện f '(x) = x + sinx và f(0) = 1. Tìm f(x)
Câu 5:
Cho hàm số y=x3+3mx2+(m+1)x+1 có đồ thị (C). Biết rằng khi m=m0 thì tiếp tuyến với đồ thị (C) tại điểm có hoành độ bằng x0=-1 đi qua điểm A(1;3). Khẳng định nào sau đây đúng?
Câu 6:
Cho hai hộp đựng bi, đựng 2 loại bi là bi trắng và bi đen, tổng số bi trong hai hộp là 20 bi và hộp thứ nhất đựng ít hơn hộp thứ hai. Lấy ngẫu nhiên từ mỗi hộp 1 bi. Cho biết xác suất để lấy được 2 bi đen là 5584. Tính xác suất để lấy được 2 bi trắng?
Câu 7:
Một khối trụ có thể tích bằng 25π. Nếu chiều cao khối trụ tăng lên năm lần và giữ nguyên bán kính đáy thì được khối trụ mới có diện tích xung quanh bằng 25π. Bán kính đáy của khối trụ ban đầu là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận