Câu hỏi:

04/06/2021 531

Cho hàm số y=f(x) có đạo hàm liên tục trên . Đồ thị hàm số y=f'(x) như hình bên. Đặt g(x)=2f(x)+x2+3. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có g'(x)=2f'(x)+2x

Phương trình g'(x)=0f'(x)=x (1).

Ta vẽ đồ thị y=f'(x) và đường thẳng y=x trên cùng một hệ trục tọa độ (như hình vẽ).

Nghiệm của phương trình (1) chính là hoành độ giao điểm của hai đồ thị trên.

Xét trên khoảng (3;3) ta có:

g'(x)=0[x=3x=1x=3

Bảng biến thiên

Dựa vào bảng biến thiên ta suy ra được hàm số y=g(x) đạt cực tiểu tại x=1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm f'(x)=(3x)(x21)+2x,x. Hỏi hàm số g(x)=f(x)x21 đồng biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 04/06/2021 10,135

Câu 2:

Tập hợp các giá trị thực của m để hàm số y=mx8x2m(1) đồng biến trên khoảng là

Xem đáp án » 04/06/2021 6,383

Câu 3:

Có bao nhiêu số nguyên m100 để hàm số y=6sinx8cosx+5mx đồng biến trên ?

Xem đáp án » 07/06/2021 4,107

Câu 4:

Giá trị của m để hàm số y=mx+1x+m nghịch biến trên mỗi khoảng xác định là:

Xem đáp án » 04/06/2021 3,619

Câu 5:

Cho hàm số y=(m+2)x33(m+2)x2+(m8)x+m21. Tìm tất cả các giá trị của tham số thực m để hàm số nghịch biến trên

Xem đáp án » 04/06/2021 3,413

Câu 6:

Tìm các giá trị của tham số m để hàm số y=xmx+1 đồng biến trên các khoảng xác định của nó

Xem đáp án » 04/06/2021 1,401

Câu 7:

Cho hàm số y = f(x) liên tục trên , có đạo hàm f'(x)=x(x1)2(x2). Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho hàm số y=f(x+2x+m) đồng biến trên khoảng (10;+).Tính tổng các phần tử của S

Xem đáp án » 07/06/2021 1,067
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua