Giải sbt Giải tích 12 Bài 2: Hàm số lũy thừa
24 người thi tuần này 4.6 1.6 K lượt thi 9 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Hàm số xác định khi − 4x + 3 ≠ 0 hay x ≠ 1; x ≠ 3.
Vậy tập xác định của hàm số đã cho là R \ {1;3}.
b) Hàm số xác định khi – 8 > 0 hay x > 2. Vậy tập xác định là (2; +).
c) Hàm số xác định khi – 3 + 2x > 0 hay x(x – 1)(x – 2) > 0
Lời giải
Lời giải
a) Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
b) Tập xác định: D = (0; +∞)
Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên:
c) Tập xác định: D = (0; +)
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
Lời giải
Đặt f(x) = , x ∈ R
Đồ thị:
Từ đồ thị của hai hình đó ta có:
f(0,5) < g(0,5);
f(1) = g(1) = 1;
f(3/2) > g(3/2), f(2) > g(2);
f(3) > g(3), f(4) > g(4).
Lời giải
Đáp án: C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.