10 Bài tập Chứng minh các tính chất hình học (có lời giải)
32 người thi tuần này 4.6 187 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Vẽ tam giác ABC vuông tại A.

Áp dụng định lí Pythagore vào tam giác vuông ABC ta được:
BC2 = AC2 + AB2
Þ AC < BC, AB < BC
Mà BC là cạnh huyền và AB, AC là các cạnh góc vuông.
Vậy trong giác vuông cạnh huyền là cạnh lớn nhất.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Áp dụng định lí Pythagore trong tam giác vuông AHB và AHC ta có:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
+) Nếu BH < CH thì AB < AC.
+) Nếu BH > CH thì AB > AC.
Vậy khẳng định đúng là HB > HC thì AB > AC.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Áp dụng định lí Pythagore vào tam giác HBA vuông ở B ta có:
AH2 = BH2 + AB2
Þ AH > AB, AH > BH.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
*) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta có:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
Vì AB < AC nên BH < CH.
*) Áp dụng định lí Pythagore vào tam giác vuông BHD và BHC ta có:
BD2 = BH2 + DH2
CD2 = CH2 + DH2
Vì BH < CH nên BD < CD.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A

+) Vì tam giác AHB vuông nên AH < AB.
+) Vì tam giác ACH vuông nên AH < AC.
Þ Khẳng định (I) đúng.
+) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta được:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
Nếu AB2 < AC2 thì AB < AC. Suy ra, BH < CH.
Nếu AB2 > AC2 thì AB > AC. Suy ra, BH > CH.
Do đó, BH < CH hoặc BH > CH.
Þ Khẳng định (II) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
37 Đánh giá
50%
40%
0%
0%
0%