Giải VBT Toán 7 Cánh diều Bài 3. Hai tam giác bằng nhau có đáp án
30 người thi tuần này 4.6 1.1 K lượt thi 8 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
- Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng………. và các góc tương ứng…………..
- Khi hai tam giác ABC và A’B’C’ bằng nhau thì ta kí hiệu là: ………………………
(Hình 20)
Quy ước: Khi viết hai tam giác bằng nhau, tên đỉnh của hai tam giác đó phải viết theo đúng thứ tự tương ứng với sự bằng nhau.
+ Nếu AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\) thì ∆ABC = …
+ Nếu ∆ABC = ∆A’B’C’ thì AB = …., …. = B’C’, CA = …. và ….= \(\widehat {A'}\), \(\widehat B\)=….,…= \(\widehat {C'}\)
- Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng………. và các góc tương ứng…………..
- Khi hai tam giác ABC và A’B’C’ bằng nhau thì ta kí hiệu là: ………………………
(Hình 20)

Quy ước: Khi viết hai tam giác bằng nhau, tên đỉnh của hai tam giác đó phải viết theo đúng thứ tự tương ứng với sự bằng nhau.
+ Nếu AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\) thì ∆ABC = …
+ Nếu ∆ABC = ∆A’B’C’ thì AB = …., …. = B’C’, CA = …. và ….= \(\widehat {A'}\), \(\widehat B\)=….,…= \(\widehat {C'}\)
Lời giải
- Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau.
- Khi hai tam giác ABC và A’B’C’ bằng nhau thì ta kí hiệu là: ∆ABC = ∆A’B’C’.
+ Nếu AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\) thì ∆ABC = ∆A’B’C’.
+ Nếu ∆ABC = ∆A’B’C’ thì AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\).
Lời giải
Vì ∆ABC = ∆MNP nên
AC = MP (hai cạnh tương ứng); \(\widehat {ACB}\)= \(\widehat {MPN}\)(hai góc tương ứng)
Mà AC = 4 cm và \(\widehat {MPN}\)= 45o nên MP = 4 cm, \(\widehat {ACB}\) = 45o.
Lời giải
Vì ∆ABC = ∆DEG nên AB = DE, BC = EG, CA = GD
Mà AB = 3cm, BC = 4 cm, CA = 6 cm nên DE = 3 cm, EG = 4 cm, GD = 6 cm.Lời giải
Ta có: \(\widehat P\) + \(\widehat Q\) + \(\widehat R\) = 180o (tổng ba góc của một tam giác), \(\widehat P\)= 71o, \(\widehat Q\)= 49o.
Suy ra: \(\widehat R\) = 180o – (\(\widehat P\) + \(\widehat Q\)) = 180o – (71o + 49o) = 60o
Do ∆PQR = ∆IHK nên \(\widehat R\) = \(\widehat K\) (hai góc tương ứng). Suy ra \(\widehat K\) = 60o.
Lời giải
Vì ∆ABC = ∆MNP nên \(\widehat A\) = \(\widehat M\)( hai góc tương ứng)
Do \(\widehat A\) + \(\widehat N\) = \(\widehat M\) + \(\widehat N\) Mà \(\widehat A\) + \(\widehat N\) = 125o nên \(\widehat M\) + \(\widehat N\) = 125o.
Ta có \(\widehat M\) + \(\widehat N\) + \(\widehat P\) = 180o (tổng ba góc của một tam giác)
Suy ra 125o + \(\widehat P\) = 180o vì thế \(\widehat P\) = 180o – 125o = 55o.
Câu 6
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
M là trung điểm của đoạn thẳng BC
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Lời giải
Vì ∆AMB = ∆AMC nên: MB = MC (hai cạnh tương ứng);
\(\widehat {BAM}\) = \(\widehat {CAM}\), \(\widehat {AMB}\) = \(\widehat {AMC}\) (hai góc tương ứng)
Do điểm M nằm giữa hai điểm B, C và MB = MC nên M là trung điểm của đoạn thẳng BC.
Câu 7
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.
Lời giải
Vì ∆AMB = ∆AMC nên: MB = MC (hai cạnh tương ứng);
\(\widehat {BAM}\) = \(\widehat {CAM}\), \(\widehat {AMB}\) = \(\widehat {AMC}\) (hai góc tương ứng)
Do tia AM nằm trong góc BAC và \(\widehat {BAM}\) = \(\widehat {CAM}\) nên tia AM là tia phân giác của góc BAC
Ta có \(\widehat {AMB}\) + \(\widehat {AMC}\) = 180o (hai góc kề bù) và \(\widehat {AMB}\) = \(\widehat {AMC}\) nên \(\widehat {AMB}\) = \(\widehat {AMC}\) = 90o.
Vậy AM \( \bot \) BC.
Lời giải
Ta có ∆OAB = ∆OCD nên \(\widehat {OAB}\) = \(\widehat {OCD}\)
Lại có \(\widehat {OAB}\) và \(\widehat {OCD}\) là hai góc so le trong
Suy ra a // b.
229 Đánh giá
50%
40%
0%
0%
0%