Bài toán liên quan đến điều kiện chia hết
21 người thi tuần này 4.5 21 K lượt thi 9 câu hỏi
🔥 Đề thi HOT:
Bộ 5 đề thi giữa kì 2 Toán lớp 5 Kết nối tri thức có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán lớp 5 Kết nối tri thức có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán lớp 5 Chân trời sáng tạo có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán lớp 5 Cánh diều có đáp án - Đề 1
Bài tập cuối tuần Toán lớp 5 Tuần 32 có đáp án
Bài tập cuối tuần Toán lớp 5 Tuần 29 có đáp án
Bài tập cuối tuần Toán lớp 5 Tuần 31 có đáp án
Bài tập cuối tuần Toán lớp 5 Tuần 33 có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
Lời giải
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504
940; 904
450; 954
950; 594
490
590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là:
540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là
540; 450; 490
940; 950; 590.
Lời giải
Một số chia hết cho 5 khi tận cùng là 0 hoặc 5.
Với các số 1, 2, 3, 4, ta viết được 4 x 4 x 4 = 64số có 3 chữ số
Vậy với các số 1, 2, 3, 4, 5 ta viết được 64 số có 5 chữ số (Có tận cùng là 5)
Lời giải
Số phải tìm chia hết cho 5 vậy y phải bằng 0 hoặc 5.
Số phải tìm chia hết cho 2 nên y phải là số chẵn
Từ đó suy ra y = 0. Số phải tìm có dạng 1996 x 0.
Số phải tìm chia hết cho 9 vậy (1 +9 + 9+ 6 + x )chia hết cho 9 hay (25 + x) chia hết cho 9. Suy ra x = 2.
Số phải tìm là: 199620.
Câu 4
Cho n = a 378 b là số tự nhiên có 5 chữ số khác nhau. Tìm tất cả các chữ số a và b để thay vào ta dược số n chia hết cho 3 và 4.
Lời giải
- n chia hết cho 4 thì 8b phải chia hết cho 4. Vậy b = 0, 4 hoặc 8
- n có 5 chữ số khác nhau nên b = 0 hoặc 4
- Thay b = 0 thì n = a3780
+ Số a3780 chia hết cho 3 thì a = 3, 6 hoặc 9
+ Số n có 5 chữ số khác nhau nên a = 6 hoặc 9
Ta được các số 63 780 và 930780 thoả mãn điều kiện của đề bài
- Thay b = 4 thì n = a3784
+ Số a3784 chia hết cho 3 thì a = 2, 5 hoặc 8
+ Số n có 5 chữ số khác nhau nên a = 2 hoặc 5. Ta được các số 23784 và 53 784 thoả mãn điều kiện đề bài
Các số phải tìm 63 780; 93 780; 23 784; 53 784.
Câu 5
Không làm phép tính xét xem các tổng và hiệu dưới đây có chia hết cho 3 hay không.
a. 459 + 690 1 236
b. 2 454 - 374
Lời giải
a. 459, 690, 1 236 đều là số chia hết cho 3 nên 459 + 690 + 1 236 chia hết cho 3
b. 2 454 chia hết cho 3 và 374 không chia hết cho 3 nên 2 454 - 374 không chia hết cho 3.
Câu 6
Tổng kết năm học 2001- 2002 một trường tiểu học có 462 học sinh tiên tiến và 195 học sinh xuất sắc. Nhà trường dự định thưởng cho học sinh xuất sắc nhiều hơn học sinh tiên tiến 2 quyển vở 1 em. Cô văn thư tính phải mua 1996 quyển thì vừa đủ phát thưởng. Hỏi cô văn thư tính đúng hay sai? vì sao?
Lời giải
Ta thấy số HS tiên tiến và số HS xuất sắc đều là những số chia hết cho 3 vì vậy số vở thưởng cho mỗi loại HS phải là 1 số chia hết cho 3. Suy ra tổng số vở phát thưởng cũng là 1 số chia hết cho 3, mà 1996 không chia hết cho 3 > Vậy cô văn thư đã tính sai.
Lời giải
Ta nhận thấy:
- a: 5 dư 1 nên y bằng 1 hoặc 6
- Mặt khác a: 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591
- x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9 Số phải tìm là: 94591
Câu 8
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
Lời giải
Gọi số phải tìm là a thì a + 1 chia hết cho 2, 3, 4, 5, 6 và 7 như vậy a + 1 có tận cùng là chữ số 0
a + 1 không là số có 1 chữ số. Nếu a + 1 có 2 chữ số thì a + 1 tận cùng là chữ số 0 lại chia hết cho 7 nên a + 1 = 70 (loại vì 70 không chia hết cho 3)
Trường hợp a + 1 có 3 chữ số thì có dạng xy0
. Số xy0 chia hết cho 4 nên y phải bằng 0, 2, 4, 6 hoặc 8
. Số xy0 chia hết cho 7 nên xy bằng 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91 hoặc 98
. Số xy0 chia hết cho 3 thì x + y + 0 chia hết cho 3
Kết hợp các điều kiện trên thì a + 1 = 420 vậy a = 419
Đáp số: 419.
Câu 9
Tổng số HS khối 1 của một trường tiểu học là 1 số có 3 chữ số và chữ số hàng trăm là 3. Nếu xếp hàng 10 và hàng 12 đều dư 8, mà xếp hàng 8 thì không còn dư. Tính số HS khối 1 của trường đó.
Lời giải
Theo đề bài thì số HS khối 1 đó có dạng 3ab. Các em xếp hàng 10 dư 8 vậy b = 8.
Thay vào ta được số 3a8. Mặt khác, các em xếp hàng 12 dư 8 nên 3a8 - 8 = 3a0 phải chia hết cho 12 suy ra 3a0 chi hết cho 3. suy ra a = 0, 3, 6 hoặc 9. Ta có các số 330; 390 không chia hết cho 12 vì vậy số HS khối 1 là 308 hoặc 368 em. số 308 không chia hết cho 8 vậy số HS khối 1 của trường đó là 368 em.
2 Đánh giá
50%
50%
0%
0%
0%