Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 7
14 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 10)
10 Bài tập Tìm giá trị đơn thức khi biết giá trị của biến (có lời giải)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I là:
\[y = 32\,\,000x.\]
Khi đó \[y\] là hàm số của \[x\], vì với mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].
b) Số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là:
\[32\,\,000 \cdot 8 = 256\,\,000\] (đồng).
Vậy số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là \[256\,\,000\] đồng.
Lời giải
\[4x--2x = 5 + 1\] \[2x = 6\] \[x = 3\] Vậy nghiệm của phương trình là \[x = 3\]. |
b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\) \(\frac{{x - 2}}{6} - \frac{{3x}}{6} = \frac{{2\left( {5 - 2x} \right)}}{6}\) \(x - 2 - 3x = 2\left( {5 - 2x} \right)\) \( - 2x - 2 = 10 - 4x\) \(2x = 12\). \(x = 6\) Vậy nghiệm của phương trình là \(x = 6.\)
|
2. Gọi số tuổi hiện nay của người thứ nhất là x (tuổi), x nguyên, dương.
Số tuổi người thứ nhất cách đây 10 năm là: \[x - 10\] (tuổi).
Số tuổi người thứ hai cách đây 10 năm là: \(\frac{{x - 10}}{3}\) (tuổi).
Sau đây 2 năm tuổi người thứ nhất là: \[x + 2\] (tuổi).
Sau đây 2 năm tuổi người thứ hai là: \(\frac{{x + 2}}{2}\) (tuổi).
Theo bài ra ta có phương trình phương trình như sau:
\(\frac{{x + 2}}{2} = \frac{{x - 10}}{3} + 10 + 2\)
\(\frac{{x + 2}}{2} - \frac{{x - 10}}{3} = 12\)
\(\frac{{3\left( {x + 2} \right)}}{6} - \frac{{2\left( {x - 10} \right)}}{6} = \frac{{72}}{6}\)
\(3\left( {x + 2} \right) - 2\left( {x - 10} \right) = 72\)
\(3x + 6 - 2x + 20 = 72\)
\(3x + 6 - 2x + 20 = 72\)
\[x = 46\] (TMĐK).
Khi đó, số tuổi hiện nay của người thứ hai là: \(\frac{{46 + 2}}{2} - 2 = 12\) (tuổi).
Lời giải
1. a) Có \(5 + 3 + 4 + 2 = 14\) kết quả có thể xảy ra và các kết quả là đồng khả năng.
Vậy có 14 kết quả là đồng khả năng.
b) Xác suất của biến cố E là \(P\left( E \right) = \frac{2}{{14}} = \frac{1}{7}.\)
c) Số kết quả thuận lợi lấy được chiếc bút màu cam hoặc màu xanh là: \(3 + 4 = 7.\)
Xác suất của biến cố F là \(P\left( F \right) = \frac{7}{{14}} = \frac{1}{2}.\)
Lời giải
1. Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).
Xét tam giác \(ABE\) có \(CD\,{\rm{//}}\,AB\), ta có
\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).
Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].
Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].
2.
![1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây (kết quả làm tròn đến chữ số thập phân thứ nhất). 2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\] a) Chứng minh: . b) Chứng minh: \(AE \cdot AC = AF \cdot AB\). c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid3-1751333517.png)
a) Xét \[\Delta ABK\] và \[\Delta CBF\] có:
\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)
Do đó .
b) Xét \[\Delta AEB\] và \[\Delta ACF\] có:
\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)
Do đó
Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)
c) Xét \[\Delta BFC\] vuông tại \[F\] có \[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).
Xét \[\Delta BEC\] vuông tại \[E\] có \[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).
Do đó \[FO = EO = \frac{{BC}}{2}\]. (1)
Xét \[\Delta AEH\] vuông tại \[E\] có \[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).
Xét \[\Delta AFH\] vuông tại \[F\] có \[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).
Do đó \[FI = EI = \frac{{AH}}{2}\]. (2)
Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].
Khi đó \[OI \bot EF\] hay \[OI \bot DN\].
Do đó \[DN\] là đường cao của \[\Delta DOI\].
Xét \[\Delta DOI\] có \[DN\] và \[IK\] là đường cao và \[N\] là giao của \[DN\] và \[IK\].
Do đó \[N\] là trực tâm của tam giác \[DOI\].
Vậy \[OI \bot DI\] (đpcm).
Lời giải
Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:
\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];
\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];
\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].
Và ngược lại đổi vị trí hai số trong các cặp số trên.
Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].
Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.
Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].