Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 8
9 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 10)
10 Bài tập Tìm giá trị đơn thức khi biết giá trị của biến (có lời giải)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Gọi hàm số bậc nhất cần tìm là \(y = ax + b\,\,\left( {a \ne 0} \right).\)
Theo giả thiết, ta có
• Với \(x = 0\,;\,\,y = 1\) thì \(0a + b = 1\) hay \(b = 1\).
• Với \(x = 6\,;\,\,y = 2\) thì \(6a + 1 = 2\) hay \(a = \frac{1}{6}\).
Vậy \(\left( d \right):y = \frac{1}{6}x + 1\).
b) Giao điểm của đường thẳng \(d\) với trục tung có ý nghĩa là chi phí ban đầu người dùng trả cho nhà mạng là 1 triệu đồng.
Trong thời gian 12 tháng, người dùng phải trả số tiền là: \(\frac{1}{6} \cdot 12 + 1 = 3\) (triệu đồng).
Lời giải
2. Gọi x (đồng) là giá ban đầu của điện thoại \(\left( {x > 0} \right)\).
Số tiền được giảm 10% giá ban đầu là \(10\% x = 0,1x\) (đồng).
Giá của cái điện thoại sau khi giảm 10% giá ban đầu là \(x\left( {100\% - 10\% } \right) = 0,9x\) (đồng).
Số tiền được giảm 5% giá đã giảm là \(5\% .0,9x = 0,045x\) (đồng).
Theo đề bài ta có phương trình:
\(0,1x + 0,045x = 3\;915\;000\)
\(0,145x = 3\;915\;000\)
\(x = 27\;000\;000\) (nhận).
Vậy giá ban đầu của cái điện thoại iPhone 16 Pro là \[27\,\,000\,\,000\] đồng.
Lời giải
a) Tổng khối lượng các loại hạt điều thu hoạch được là:
\(1\,\,450 + 2\,\,230 + 1\,\,860 = 5\,\,540\) (kg).
Vậy tổng khối lượng các loại hạt điều thu hoạch được là \(5\,\,540\) kg.
b) Tổng khối lượng hạt điều loại 2 và loại 3 là: \(2\,\,230 + 1\,\,860 = 4\,\,090\) (kg).
Xác suất thực nghiệm của biến cố B là \(P\left( B \right) = \frac{{4\,\,090}}{{5\,\,540}} \approx 0,7383.\)
c) Gọi \(k\) là số kilôgam hạt điều loại 1 trong \(100\) kg hạt điều sau khi phân loại.
Ta có \[P\left( A \right) = \frac{k}{{100}} \approx 0,2617\] suy ra \(k \approx 0,2617 \cdot 100 = 26,17 \approx 26\) (kg).
Vậy có khoảng 26 kg hạt điều loại 1 trong 100 kg hạt điều sau khi phân loại.Lời giải
1. Đổi: \[1,5{\rm{ m}} = 150{\rm{ cm}}.\]
Ta có \(AB \bot BD;\,\,CD \bot BD\) nên \(CD\,{\rm{//}}\,AB\).
Suy ra \(\frac{{EB}}{{ED}} = \frac{{AB}}{{DC}}\) (theo định lí Thalès).
Do đó \(EB = \frac{{AB \cdot ED}}{{DC}} = \frac{{150 \cdot 6}}{4} = 225\,\,{\rm{(cm)}}\).
Vậy người đứng cách vật kính máy ảnh là \[225{\rm{ cm}}.\]
2.
![1. Người ta dùng máy ảnh để chụp một người có chiều cao \[1,5{\rm{ m}}\] (như hình vẽ). Sau khi rửa phim thấy ảnh \[CD\] cao \[4{\rm{ cm}}\]. Biết khoảng cách từ phim đến vật kính của máy ảnh lúc chụp là \[ED = 6{\rm{ cm}}.\] Hỏi khoảng cách từ người đó đến vật kính máy ảnh một đoạn \[BE\] là bao nhiêu? 2. Cho tam giác \[ABC\] vuông tại \[A\,\,\,\left( {AB < AC} \right),\] vẽ đường cao \[AH.\] a) Chứng minh: . b) Chứng minh: \(A{H^2} = HB \cdot HC\). c) Trên tia \[HC,\] lấy điểm \(D\) sao cho \[HD = HA.\] Từ \(D\) vẽ đường thẳng song song \[AH\] cắt \[AC\] tại \[E.\] Chứng minh \[AE = AB.\] (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid7-1751333943.png)
a) Xét \[\Delta ABH\] và \[\Delta CAB\] có:
\[\widehat {ABH} = \widehat {CBA}\;\,\left( {\widehat B\;\,{\rm{chung}}} \right)\]
\(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\)
Do đó .
b) Xét hai tam giác vuông \[ABC\] và \[ABH\] có:
\(\widehat {ABC} + \widehat {ACB} = 180^\circ - \widehat {BAC} = 90^\circ \)
\(\widehat {ABH} + \widehat {BAH} = 180^\circ - \widehat {AHB} = 90^\circ \)
Do đó (vì cùng phụ với )
Xét \[\Delta ABH\] và \[\Delta CAH\] có:
\(\widehat {BAH} = \widehat {ACH}\;\,\left( {{\rm{cmt}}} \right)\); \(\widehat {AHB} = \widehat {CHA}\;\,\left( { = 90^\circ } \right)\)
Do đó .
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) hay \(A{H^2} = HB \cdot HC\) (đpcm).
c) Ta có \[AH \bot BC\] mà \[DE{\rm{ // }}AH\] nên suy ra \[DE \bot BC\].
Gọi \[K\] là hình chiếu của \[E\] lên \[AH\].
Từ đó suy ra tứ giác \[EDHK\] là hình chữ nhật có:
• \(\widehat {EKH} = 90^\circ \) nên \(\widehat {AKE} = 90^\circ \).
• \[EK = HD = HA\].
Lại có:
• \(\widehat {BAC} = \widehat {BAH} + \widehat {KAE} = 90^\circ \).
• \(\widehat {KAE} + \widehat {KEA} = 180^\circ - \widehat {AKE} = 90^\circ \).
Nên suy ra \(\widehat {AEK} = \widehat {BAH}\) (vì cùng phụ với \(\widehat {KAE}\)).
Xét \[\Delta AKE\] và \[\Delta BHA\] có:
\(\widehat {AKE} = \widehat {BHA}\;\,\left( { = 90^\circ } \right)\); \(EK = AH\;\left( {{\rm{cmt}}} \right)\); \(\widehat {AEK} = \widehat {BAH}\;\left( {{\rm{cmt}}} \right)\)
Do đó \(\Delta AKE = \Delta BHA\;\,\left( {{\rm{g}}{\rm{.c}}{\rm{.g}}} \right)\).
Từ đó suy ra \[AE = AB\] (hai cạnh tương ứng).
Lời giải
Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).
Khi lấy ngẫu nhiên 2 sản phẩm:
Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;
Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.
Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).
Có \(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.
Số kết quả thuận lợi của biến cố E là \[136--45 = 91.\]
Vậy xác suất của biến cố E là \(\frac{{91}}{{136}}\).