Đề thi Toán lớp 7 Giữa kì 2 có đáp án (Đề 1)
45 người thi tuần này 4.7 9.5 K lượt thi 7 câu hỏi 90 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Điền dấu “Đ, S” vào chỗ trống (…) một cách thích hợp.
1. -0.35 là một đơn thức (…)
2. Bậc của là 5 (…)
3. là đa thức bậc 2 (…)
4. Cho A = 3x + y và B = x – 3y thì A + B = 2x + 2y (…)
Lời giải
1. -0.35 là một đơn thức (Đ)
2. Bậc của là 5 (S)
3. là đa thức bậc 2 (Đ)
4. Cho A = 3x + y và B = x – 3y thì A + B = 2x + 2y (S)
Câu 2
Điền dấu “Đ, S” vào chỗ trống (…) một cách thích hợp.
1. Trong một tam giác, góc đối diện với cạnh lớn hơn thì lớn hơn (…)
2. Tam giác có cân có 1 góc bằng 600 là tam giác đều (…)
3. Ba đoạn thẳng 5cm, 3cm, 9cm có thể là 3 cạnh của tam giác (…)
4. Nếu ba góc của tam giác này bằng ba góc của tam giác kia thì 2 tam giác đó bằng nhau (…)
5. Trong tam giác ABC thì |BC - AB| < AC < BC + AC (…)
6. Trong tam giác ABC cân tại B, AC= 5cm, AB= 3cm thì chu vi tam giác là 13cm (…)
Lời giải
1. Trong một tam giác, góc đối diện với cạnh lớn hơn thì lớn hơn (Đ)
2. Tam giác có cân có 1 góc bằng 600 là tam giác đều (Đ)
3. Ba đoạn thẳng 5cm, 3cm, 9cm có thể là 3 cạnh của tam giác (S)
4. Nếu ba góc của tam giác này bằng ba góc của tam giác kia thì 2 tam giác đó bằng nhau (S)
5. Trong tam giác ABC thì |BC - AB| < AC < BC + AC (Đ)
6. Trong tam giác ABC cân tại B, AC= 5cm, AB= 3cm thì chu vi tam giác là 13cm (S)
Câu 3
Cho hàm số y = f(x) = ax, biết đồ thị của hàm số đi qua điểm A(2; 1).
a) Hãy xác định hệ số a.
b) Tính f(-2); f(4); f(0).
Lời giải
a) Đồ thị hàm số y = ax đi qua điểm A(2; 1) nên ta có: 1 = 2.a . Vậy
thì đồ thị hàm số đi qua điểm A(2;1).
b) Với thì
Ta có:
Câu 4
Thời gian làm một bài tập Toán của một số học sinh lớp 7 (tính bằng phút) được thống kê bởi bảng sau:
5 5 6 | 6 8 5 | 7 8 5 | 4 8 5 | 5 9 4 | 6 7 10 |
a) Dấu hiệu ở đây là gì ? Số các giá trị là bao nhiêu?
b) Lập bảng tần số. Tính số trung bình cộng?
c) Tìm Mốt của dấu hiệu?
Lời giải
a) Dấu hiệu: Thời gian làm một bài tập Toán của mỗi học sinh lớp 7 (tính theo phút)
Số các giá trị là: 18
b) Lập bảng tần số.
Giá trị | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Tần số | 2 | 6 | 3 | 2 | 3 | 1 | 1 | N = 18 |
Số trung bình cộng:
c) Mốt của dấu hiệu là 5.
Lời giải
Câu 6
Cho tam giác ABC có ; AB= 7cm; BC= 15 cm. Vẽ AH vuông góc với BC (H thuộc BC). Lấy điểm M trên HC sao HM= HB.
a) So sánh góc BAC và ACB.
b) Chứng minh tam giác ABM đều.
c) Tam giác ABC có phải là tam giác vuông không? Vì sao?
Lời giải
Chứng minh
a) Trong tam giác ABC có: AB = 7 cm; BC = 15 cm nên AB < BC
Do đó:
b) Xét tam giác ABH và tam giác AMH cùng vuông tại H có:
AH: cạnh chung
HB = HM (gt)
Do đó: (hai cạng góc vuông)
Suy ra: AB = AM (hai cạnh tương ứng)
Nên ABM cân tại A
Mà
Do đó tam giác ABM đều.
c) Ta có: BM = AB = 7 cm ( tam giác ABM đều)
Suy ra BH = HM = 7/2 = 3,5 cm
HC = BC - BH = 15 - 3,5 = 11,5 cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H:
Áp dụng định lý Pytago trong tam giác ACH vuông tại H:
AC = 13 cm
Vì nên
Vậy tam giác ABC không phải là tam giác vuông.
Câu 7
Cho đa thức trong đó các hệ số a, b, c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c đều chia hết cho 5.
Lời giải
7 Đánh giá
71%
29%
0%
0%
0%