10 Bài tập Tính độ dài đoạn thẳng và tỉ số của hai đoạn thẳng bằng cách sử dụng tính chất của đường phân giác (có lời giải)

40 người thi tuần này 4.6 212 lượt thi 10 câu hỏi 45 phút

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Tỉ số CDBD    trong hình vẽ dưới đây là bao nhiêu?

Tỉ số CD/ BD  trong hình vẽ dưới đây là bao nhiêu? (ảnh 1)

Lời giải

Đáp án đúng là: B

Tam giác ABC có AD là đường phân giác góc A.

Do đó ta có:

ACAB=CDBD hay 94=CDBD  .

Câu 2

Cho tam giác ABC có BE là phân giác góc ABC (E AC). Cho AB = 6 cm, BC = x cm, AE = 5 cm, EC = 3 cm. Giá trị của x là:

Lời giải

Đáp án đúng là: C

Cho tam giác ABC có BE là phân giác góc ABC (E ∈ AC). Cho AB = 6 cm, BC = x cm, AE = 5 cm, EC = 3 cm. Giá trị của x là: A. 10; B. 4; C. 3,6; D. 2,5. (ảnh 1)

 

Tam giác ABC có BE là đường phân giác góc E.

Do đó ta có: ABBC=AEEC   hay 6x=53

Suy ra x=635=3,6  .

Câu 3

Cho tam giác OMN có OD là đường phân giác góc MON (D MN). Biết DN = 7 cm, ON = 9 cm. Tỉ số OMMD   là:

Lời giải

Đáp án đúng là: A

Cho tam giác OMN có OD là đường phân giác góc MON (D ∈ MN). Biết DN = 7 cm, ON = 9 cm. (ảnh 1)

Tam giác OMN có OD là đường phân giác góc O.

Do đó ta có:  ONOM=DNMD.

Suy ra ONDN=OMMD  (tính chất của tỉ lệ thức).

Khi đó, OMMD=97 .

Câu 4

Cho tam giác ABC có CE là đường phân giác góc ACB (E AB). Biết AB = 8 cm, AC = 6 cm, BC = 10 cm, AE = x cm, EB = y cm. Giá trị của x và y lần lượt là:

Lời giải

Đáp án đúng là: D

Cho tam giác ABC có CE là đường phân giác góc ACB (E ∈ AB). Biết AB = 8 cm, AC = 6 cm, BC = 10 cm, AE = x cm, EB = y cm. Giá trị của x và y lần lượt là: A. 5; 4; B. 3; 7; C. 5; 3; D. 3; 5. (ảnh 1)

Tam giác ABC có CE là đường phân giác góc C.

Do đó ta có:  ACCB=AEEB hay  xy=610=35 .

Suy ra x=35y .

Vì AE + EB = AB hay x + y = 8

Do đó 35y + y=8  , suy ra 85y=8 .

Vậy y = 5 và x = 8 – 5 = 3.

Câu 5

Cho tam giác DEF có DI là đường phân giác của góc EDF (I EF). Biết DE = 5 cm, EF = 9 cm, DF = 8 cm. Tỉ số diện tích của hai tam giác DEI và DFI là:

Lời giải

Đáp án đúng là: A

Cho tam giác DEF có DI là đường phân giác của góc EDF (I ∈ EF). Biết DE = 5 cm, EF = 9 cm, DF = 8 cm. Tỉ số diện tích của hai tam giác DEI và DFI là: (ảnh 1)

Tam giác DEF có DI là đường phân giác của góc D.

Do đó ta có: DEDF=EIIF  hay EIIF=58  .

Tỉ số diện tích của tam giác DEI và DFI chính là tỉ số EIIF   (vì hai tam giác này có chung đường cao hạ từ D đến EF).

Vậy tỉ số diện tích của tam giác DEI và tam giác DFI là 58  .

Câu 6

Cho tam giác MNP có MP = 2MN, MO là phân giác góc NMP. Xét các khẳng định sau:

(I) NOOP=12

(II) NONP=12 .         (III) OPNP=23  .        (IV) OPNO=4  .

Số khẳng định đúng là

Lời giải

Đáp án đúng là: C

Cho tam giác MNP có MP = 2MN, MO là phân giác góc NMP. Xét các khẳng định sau: (ảnh 1)

Ta có MP = 2MN, suy ra MNMP=12 .

Tam giác MNP có MO là đường phân giác góc M.

Do đó ta có: NOOP=MNMP  hay NOOP=12  . Vậy (I) đúng.

Suy ra OPNO=2 . Vậy (IV) sai.

Vì NO + OP = NP nên NO + 2NO = NP hay 3NO = NP

Suy ra  NONP=13 OPNP=23 . Vậy (II) sai, (III) đúng.

Vậy có 2 khẳng định đúng.

Câu 7

Cho tam giác ABC có ba đường phân giác AD, BE, CF cắt nhau tại I. Gọi G, H, K lần lượt là hình chiếu của I lên AB, AC, BC. Biết GI = 12 cm. Độ dài IK là:

Lời giải

Đáp án đúng là: D

Cho tam giác ABC có ba đường phân giác AD, BE, CF cắt nhau tại I. Gọi G, H, K lần lượt là hình chiếu của I lên AB, AC, BC. Biết GI = 12 cm. Độ dài IK là: A. 4 cm; B. 8 cm; C. 6 cm; D. 12 cm. (ảnh 1)

Vì I là giao điểm của ba đường phân giác trong tam giác ABC.

Do đó I cách đều ba cạnh của tam giác ABC (tính chất ba đường phân giác trong tam giác).

Suy ra IG = IH = IK.

Mà IG = 12 cm nên IK = 12 cm.

Câu 8

Cho hình vẽ dưới đây. Khi đó giá trị y – x là:

Cho hình vẽ dưới đây. Khi đó giá trị y – x là: (ảnh 1)

Lời giải

Đáp án đúng là: B

Tam giác ABC có AD là đường phân giác của góc A.

Do đó ta có ABAC=BDDC  hay 67=xy

Suy ra x=67y .

Ta có BD + DC = BC hay x + y = 9.

Từ đó ta có 67y+y=9 , suy ra 137y=9  .

Vậy y=6313  và  x=5413.

Do đó yx=63135413=913 .

Câu 9

Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: C

Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng? (ảnh 1)

Tam giác ABC có:

+ BI là đường phân giác của góc B.

Do đó ta có: AIIC=ABBC  hay AIIC=mn  (1).

+ CH là đường phân giác của góc C.

Do đó ta có: AHHB=ACBC  hay AHHB=mn (2).

Từ (1) và (2) suy ra AHHB=AIIC=mn .

Theo định lí Thalès đảo ta suy ra HI // BC.

Theo (2) ta có AHHB=mn  nên AH+HBHB=m + nn   hay ABHB=m + nn  .

Suy ra  HBAB=nm + n, khi đó, HAAB=ABHBAB=1HBAB=mm + n  .

Vì HI // BC nên ta có: AHAB=HIBC .

Suy ra HI=AHABBC=mm + nn=mnm + n .

Câu 10

Cho tam giác ABC có chu vi là 18 cm, các đường phân giác BD, CE. Tính các cạnh của tam giác ABC biết ADDC=12;AEEB=34 .

Lời giải

Đáp án đúng là: B

Cho tam giác ABC có chu vi là 18 cm, các đường phân giác BD, CE. Tính các cạnh của tam giác ABC biết (ảnh 1)

Tam giác ABC có:

+ BD là đường phân giác của góc B.

Do đó ADDC=ABBC   hay ABBC=12 .

Suy ra BC = 2AB (1).

+ CE là đường phân giác của góc C.

Do đó AEEB=ACBC  hay ACBC=34

Suy ra AC=34BC  (2).

Từ (1) và (2) suy ra AC=32AB  .

Chu vi tam giác ABC bằng:

AB + AC + BC = AB + 32AB  + 2AB = 92AB  = 18.

Suy ra AB = 4 (cm)

Vậy BC = 2 4 = 8 (cm), AC=324 = 6  (cm).

 

4.6

42 Đánh giá

50%

40%

0%

0%

0%