10 Bài tập Tính độ dài đoạn thẳng và tỉ số của hai đoạn thẳng bằng cách sử dụng tính chất của đường phân giác (có lời giải)
40 người thi tuần này 4.6 212 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Tam giác ABC có AD là đường phân giác góc A.
Do đó ta có:
hay .
Câu 2
Cho tam giác ABC có BE là phân giác góc ABC (E ∈ AC). Cho AB = 6 cm, BC = x cm, AE = 5 cm, EC = 3 cm. Giá trị của x là:
Cho tam giác ABC có BE là phân giác góc ABC (E ∈ AC). Cho AB = 6 cm, BC = x cm, AE = 5 cm, EC = 3 cm. Giá trị của x là:
Lời giải
Đáp án đúng là: C

Tam giác ABC có BE là đường phân giác góc E.
Do đó ta có: hay
Suy ra .
Câu 3
Cho tam giác OMN có OD là đường phân giác góc MON (D ∈ MN). Biết DN = 7 cm, ON = 9 cm. Tỉ số là:
Cho tam giác OMN có OD là đường phân giác góc MON (D ∈ MN). Biết DN = 7 cm, ON = 9 cm. Tỉ số là:
Lời giải
Đáp án đúng là: A

Tam giác OMN có OD là đường phân giác góc O.
Do đó ta có: .
Suy ra (tính chất của tỉ lệ thức).
Khi đó, .
Câu 4
Cho tam giác ABC có CE là đường phân giác góc ACB (E ∈ AB). Biết AB = 8 cm, AC = 6 cm, BC = 10 cm, AE = x cm, EB = y cm. Giá trị của x và y lần lượt là:
Cho tam giác ABC có CE là đường phân giác góc ACB (E ∈ AB). Biết AB = 8 cm, AC = 6 cm, BC = 10 cm, AE = x cm, EB = y cm. Giá trị của x và y lần lượt là:
Lời giải
Đáp án đúng là: D

Tam giác ABC có CE là đường phân giác góc C.
Do đó ta có: hay .
Suy ra .
Vì AE + EB = AB hay x + y = 8
Do đó , suy ra .
Vậy y = 5 và x = 8 – 5 = 3.
Câu 5
Cho tam giác DEF có DI là đường phân giác của góc EDF (I ∈ EF). Biết DE = 5 cm, EF = 9 cm, DF = 8 cm. Tỉ số diện tích của hai tam giác DEI và DFI là:
Cho tam giác DEF có DI là đường phân giác của góc EDF (I ∈ EF). Biết DE = 5 cm, EF = 9 cm, DF = 8 cm. Tỉ số diện tích của hai tam giác DEI và DFI là:
Lời giải
Đáp án đúng là: A

Tam giác DEF có DI là đường phân giác của góc D.
Do đó ta có: hay .
Tỉ số diện tích của tam giác DEI và DFI chính là tỉ số (vì hai tam giác này có chung đường cao hạ từ D đến EF).
Vậy tỉ số diện tích của tam giác DEI và tam giác DFI là .
Câu 6
Cho tam giác MNP có MP = 2MN, MO là phân giác góc NMP. Xét các khẳng định sau:
(I)
(II) . (III) . (IV) .
Số khẳng định đúng là
Cho tam giác MNP có MP = 2MN, MO là phân giác góc NMP. Xét các khẳng định sau:
(I)
Số khẳng định đúng là
Lời giải
Đáp án đúng là: C

Ta có MP = 2MN, suy ra .
Tam giác MNP có MO là đường phân giác góc M.
Do đó ta có: hay . Vậy (I) đúng.
Suy ra . Vậy (IV) sai.
Vì NO + OP = NP nên NO + 2NO = NP hay 3NO = NP
Suy ra và . Vậy (II) sai, (III) đúng.
Vậy có 2 khẳng định đúng.
Câu 7
Cho tam giác ABC có ba đường phân giác AD, BE, CF cắt nhau tại I. Gọi G, H, K lần lượt là hình chiếu của I lên AB, AC, BC. Biết GI = 12 cm. Độ dài IK là:
Cho tam giác ABC có ba đường phân giác AD, BE, CF cắt nhau tại I. Gọi G, H, K lần lượt là hình chiếu của I lên AB, AC, BC. Biết GI = 12 cm. Độ dài IK là:
Lời giải
Đáp án đúng là: D

Vì I là giao điểm của ba đường phân giác trong tam giác ABC.
Do đó I cách đều ba cạnh của tam giác ABC (tính chất ba đường phân giác trong tam giác).
Suy ra IG = IH = IK.
Mà IG = 12 cm nên IK = 12 cm.
Lời giải
Đáp án đúng là: B
Tam giác ABC có AD là đường phân giác của góc A.
Do đó ta có hay
Suy ra .
Ta có BD + DC = BC hay x + y = 9.
Từ đó ta có , suy ra .
Vậy và .
Do đó .
Câu 9
Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng?
Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng?
Lời giải
Đáp án đúng là: C

Tam giác ABC có:
+ BI là đường phân giác của góc B.
Do đó ta có: hay (1).
+ CH là đường phân giác của góc C.
Do đó ta có: hay (2).
Từ (1) và (2) suy ra .
Theo định lí Thalès đảo ta suy ra HI // BC.
Theo (2) ta có nên hay .
Suy ra , khi đó, .
Vì HI // BC nên ta có: .
Suy ra .
Câu 10
Cho tam giác ABC có chu vi là 18 cm, các đường phân giác BD, CE. Tính các cạnh của tam giác ABC biết .
Cho tam giác ABC có chu vi là 18 cm, các đường phân giác BD, CE. Tính các cạnh của tam giác ABC biết .
Lời giải
Đáp án đúng là: B

Tam giác ABC có:
+ BD là đường phân giác của góc B.
Do đó hay .
Suy ra BC = 2AB (1).
+ CE là đường phân giác của góc C.
Do đó hay
Suy ra (2).
Từ (1) và (2) suy ra .
Chu vi tam giác ABC bằng:
AB + AC + BC = AB + + 2AB = = 18.
Suy ra AB = 4 (cm)
Vậy BC = 2 ⋅ 4 = 8 (cm), (cm).
42 Đánh giá
50%
40%
0%
0%
0%