Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án ( Đề 8)

42 người thi tuần này 4.6 1.4 K lượt thi 5 câu hỏi 50 phút

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) Để đường thẳng \(\left( {{d_3}} \right):y = - 2mx + 5\) là đồ thị của hàm số bậc nhất thì \( - 2m \ne 0,\) hay \(m \ne 0.\)

b) Đường thẳng \(\left( {{d_1}} \right):y = - 2x\)\({a_1} = - 2;\)

Đường thẳng \(\left( {{d_2}} \right):y = 1,5x + 7\)\({a_2} = 1,5.\)

Do \({a_1} \ne {a_2}\) nên hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) cắt nhau.

Hoành độ giao điểm của \(\left( {{d_1}} \right)\)\(\left( {{d_2}} \right)\) là nghiệm của phương trình:

\( - 2x = 1,5x + 7\)

\(3,5x = - 7\)

\(x = - 2.\)

Thay \(x = - 2\) vào hàm số \(y = - 2x,\) ta được \(y = - 2 \cdot \left( { - 2} \right) = 4.\)

Vậy giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\)\(\left( {{d_2}} \right)\)\(A\left( { - 2;4} \right).\)

c) Để \(\left( {{d_3}} \right)\) cắt \(\left( {{d_1}} \right)\) thì \( - 2m \ne - 2,\) do đó \(m \ne 1.\)

Để \(\left( {{d_3}} \right)\) cắt \(\left( {{d_2}} \right)\) thì \( - 2m \ne 1,5,\) do đó \(m \ne - \frac{3}{4}.\)

Khi đó ba đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\)\(\left( {{d_3}} \right)\) cắt nhau tại một điểm thì đường thẳng \(\left( {{d_3}} \right)\) đi qua giao điểm \(A\left( { - 2;4} \right)\) của hai đường thẳng \(\left( {{d_1}} \right)\)\(\left( {{d_2}} \right).\)

Do đó \(4 = - 2m \cdot \left( { - 2} \right) + 5\)

\(4m = - 1\)

\(m = - \frac{1}{4}\) (thỏa mãn).

Vậy \(m = - \frac{1}{4}\) thỏa mãn yêu cầu đề bài.

Lời giải

a) 1 triệu đồng \[ = 1{\rm{ }}000\] nghìn đồng.

Hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ) là: \[y = 1{\rm{ }}000 + 500x\] (nghìn đồng).

b) Đồ thị hàm số \[y = 1{\rm{ }}000 + 500x\] đi qua hai điểm \[\left( {--2;0} \right)\]\[\left( {0;1{\rm{ }}000} \right)\] nên đồ thị hàm số được vẽ như hình bên.

Tổng chi phí cho một lần thuê trong \[x = 3\] giờ tương ứng với điểm \[y = 2{\rm{ }}500\] nghìn đồng = 2 triệu 500 nghìn đồng.

Giao điểm của đồ thị với trục tung là điểm \[\left( {0;{\rm{ }}1{\rm{ }}000} \right).\] Giao điểm này biểu thị chi phí cố định khi thuê thuyền, dù không sử dụng giờ nào (tức là \[x = 0)\] vẫn phải trả phí 1 triệu đồng này, nếu đặt thuê.

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ. (ảnh 1)

Lời giải

a) Vì \(ABCD\) là hình thang có hai đáy \(AB\)\(CD\) nên \(AB\,{\rm{//}}\,CD.\)

\(AB\,{\rm{//}}\,DM\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) \(\left( 1 \right)\)

\(AB\,{\rm{//}}\,MC\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả

Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của (ảnh 1)

định lí Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) \(\left( 2 \right)\)

Lại có \(M\) là trung điểm của \(CD\) nên \(DM = MC.\) \(\left( 3 \right)\)

Từ \(\left( 1 \right),\) \(\left( 2 \right)\)\(\left( 3 \right)\) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}},\) theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,AB.\)

b) Xét \(\Delta ADM\)\(HE\,{\rm{//}}\,DM,\) theo hệ quả định lí Thalès ta có \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)

Xét \(\Delta AMC\)\(EF\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{EF}}{{MC}} = \frac{{AE}}{{AM}}.\]

Do đó \(\frac{{HE}}{{DM}} = \frac{{EF}}{{MC}},\)\(DM = MC\) nên \(HE = EF.\)

Chứng minh tương tự ta cũng có \(EF = FN.\) Suy ra \(HE = EF = FN.\)

c) Vì \(M\) là trung điểm của \(CD\) nên \(DM = MC = \frac{1}{2}CD = \frac{1}{2} \cdot 12 = 6{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Theo câu a, ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}.\) Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}.\)

Do đó \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)

Mà theo câu b, \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}} = \frac{5}{9}.\)

Suy ra \(HE = \frac{5}{9}DM = \frac{5}{9} \cdot 6 = \frac{{10}}{3}{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Vậy \(HN = 3HE = 3 \cdot \frac{{10}}{3} = 10{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Lời giải

Hướng dẫn giải

Vì kèo mái tôn là một trong những bộ phận không thể thiếu trong cấu tạo mái nhà lợp tôn. Nó giúp chống đỡ và giảm trọng (ảnh 2)

Đặt các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E,{\rm{ }}M,{\rm{ }}N,{\rm{ }}P\] như hình vẽ trên.

Xét \(\Delta AMC\)\(E,\,\,P\) lần lượt là trung điểm của \(AC,\,\,MC\) (do \(EA = EC,PM = PC)\) nên \(EP\) là đường trung bình của \(\Delta AMC.\)

Do đó \(EP = \frac{1}{2}AM = \frac{1}{2} \cdot 2,7 = 1,35{\rm{\;}}\left( {\rm{m}} \right)\) (tính chất đường trung bình của tam giác).

Hay \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right){\rm{.}}\)

Ta có \(MB = MN + NB\)\(MC = MP + PC\)

\(MN = NB = MP = PC\) nên \(MB = MC.\)

Xét \(\Delta ABC\)\(D,\,\,M\) lần lượt là trung điểm của \(AB,\,\,BC\) (do \(DB = DA,MB = MC)\) nên \(DM\) là đường trung bình của \(\Delta ABC.\)

Do đó \[DM = \frac{1}{2}AC\] (tính chất đường trung bình của tam giác).

Suy ra \(AC = 2DM = 2 \cdot 2,8 = 5,6{\rm{\;}}\left( {\rm{m}} \right).\) Hay \[y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\]

Vậy độ dài của cây chống đứng bên và độ dài của của cánh kèo lần lượt là \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right);\) \(y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\)

4.6

279 Đánh giá

50%

40%

0%

0%

0%