5 câu Trắc nghiệm Tính chất ba đường cao của tam giác có đáp án (Nhận biết)
41 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
30 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 1 có đáp án
17 Bài tập Xác định các cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía trên hình vẽ cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
- Trong một tam giác, ba đường cao cùng đi qua một điểm, điểm này gọi là trực tâm của tam giác nên phương án A, B là đúng.
- Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó nên phương án D đúng.
- Điểm cách đều ba đỉnh của một tam giác là giao điểm ba đường trung trực của tam giác đó. Do đó phương án C là sai.
Vậy ta chọn đáp án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có:
- Tam giác nhọn có trực tâm nằm bên trong tam giác;
- Tam giác tù có trực tâm nằm bên ngoài tam giác;
- Tam giác vuông có trực tâm trùng với đỉnh góc vuông.
Vậy cả 3 phát biểu đều đúng, ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó nên điểm H là giao điểm của ba đường cao trong tam giác ở Hình c.
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét DIBC có: CA ⊥ BI và BA ⊥ CI nên CA và BA là hai đường cao của tam giác IBC.
Mà hai đường thẳng CA và BA cắt nhau tại A
Do đó A là trực tâm của tam giác IBC.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét DABC có hai đường cao AM và BN cắt nhau tại I nên I là trực tâm tam giác ABC.
Suy ra CI là đường cao của tam giác ABC hay CI ⊥ AB.
Do đó phương án A là đúng.
Vậy ta chọn phương án A.