Bài tập Cuối chuyên đề 2 có đáp án
28 người thi tuần này 4.6 686 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.21 = 4 = 1.21 + 1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k = k.2k + 1.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k + [(k + 1) + 1].2k + 1 = (k + 1)2(k + 1) + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k + [(k + 1) + 1].2k + 1
= k.2k + 1 + [(k + 1) + 1].2k + 1
= (2k + 2).2k + 1
= (k + 1).2.2k + 1
= (k + 1)2k + 2
= (k + 1).2(k + 1) + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Lời giải
a)
b) Từ a) ta có thể dự đoán
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.
Như vậy khẳng định đúng cho trường hợp n = 0.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.
Thật vậy, ta có:
102(k + 1) + 1 + 1
= 10(2k + 1) + 2 + 1
= 100.102k + 1 + 1
= 100.102k + 1 + 100 – 100 + 1
= 100(102k + 1 + 1) – 100 + 1
= 100(102k + 1 + 1) – 99.
Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.
Vậy khẳng định đúng với mọi số tự nhiên n.
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 2 ta có 52 = 25 = 32 + 42.
Như vậy khẳng định đúng cho trường hợp n = 2.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 5k ≥ 3k + 4k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 5k + 1 ≥ 3k + 1 + 4k + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
5k + 1 = 5.5k ≥ 5(3k + 4k) = 5. 3k + 5.4k ≥ 3. 3k + 4.4k = 3k + 1 + 4k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n.
Lời giải
a)
b) Áp dụng câu a) ta có:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.