Bài tập Cuối chuyên đề 2 có đáp án
22 người thi tuần này 4.6 743 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Số trung bình cộng, số trung vị. Mốt. Phương sai và độ lệch chuẩn
12 câu Trắc nghiệm đề kiểm tra 3 phương trình hệ phương trình
9 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn 10 có đáp án
20 câu Trắc nghiệm Đề kiểm tra chương 3: Phương pháp tọa độ trong mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.21 = 4 = 1.21 + 1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k = k.2k + 1.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k + [(k + 1) + 1].2k + 1 = (k + 1)2(k + 1) + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
2.21 + 3.22 + 4.23 + ... + (k + 1).2k + [(k + 1) + 1].2k + 1
= k.2k + 1 + [(k + 1) + 1].2k + 1
= (2k + 2).2k + 1
= (k + 1).2.2k + 1
= (k + 1)2k + 2
= (k + 1).2(k + 1) + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Lời giải
a)
b) Từ a) ta có thể dự đoán
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.
Như vậy khẳng định đúng cho trường hợp n = 0.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.
Thật vậy, ta có:
102(k + 1) + 1 + 1
= 10(2k + 1) + 2 + 1
= 100.102k + 1 + 1
= 100.102k + 1 + 100 – 100 + 1
= 100(102k + 1 + 1) – 100 + 1
= 100(102k + 1 + 1) – 99.
Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.
Vậy khẳng định đúng với mọi số tự nhiên n.
Lời giải
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 2 ta có 52 = 25 = 32 + 42.
Như vậy khẳng định đúng cho trường hợp n = 2.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 5k ≥ 3k + 4k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 5k + 1 ≥ 3k + 1 + 4k + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
5k + 1 = 5.5k ≥ 5(3k + 4k) = 5. 3k + 5.4k ≥ 3. 3k + 4.4k = 3k + 1 + 4k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n.
Lời giải
a)
b) Áp dụng câu a) ta có:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.