Giải SBT Toán 10 Bài 22. Ba đường conic có đáp án
35 người thi tuần này 4.6 0.9 K lượt thi 12 câu hỏi
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Số trung bình cộng, số trung vị. Mốt. Phương sai và độ lệch chuẩn
12 câu Trắc nghiệm đề kiểm tra 3 phương trình hệ phương trình
9 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn 10 có đáp án
20 câu Trắc nghiệm Đề kiểm tra chương 3: Phương pháp tọa độ trong mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\) của (E) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 36}\\{{b^2} = 16}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} - {b^2}} = 2\sqrt 5 \)
Vậy (E) có hai tiêu điểm là: \({F_1}\left( { - 2\sqrt 5 ;0} \right),{F_2}\left( {2\sqrt 5 ;0} \right)\)và có tiêu cự là: \(2c = 4\sqrt 5 \).
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{20}} = 1\) của (H) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 16}\\{{b^2} = 20}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} + {b^2}} = 6\)
Vậy (H) có hai tiêu điểm là F1 (–6; 0), F2(6; 0) và có tiêu cự là 2c = 12.
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc y2 = 4x của (P) ta có:
2p = 4 ⇔ p = 2 ⇔ \(\frac{p}{2} = 1\) .
Vậy (P) có tiêu điểm là F(1; 0) và có đường chuẩn là Δ: x = –1.
Lời giải
Hướng dẫn giải
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0)
Vì (E) đi qua điểm A(6; 0) nên ta có \(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\) ⇔ a2 = 62
Do (E) có tiêu cự là 2c = 8 nên ta có c = 4 ⇒ b2 = a2 – c2 = 62 – 42 = 20.
Vậy phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1\).
Lời giải
Hướng dẫn giải
Phương trình chính tắc của (H) có dạng: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a, b > 0)
Do (H) có một tiêu điểm là F2(5; 0) nên ta có:
c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2
Vì (H) đi qua điểm \(M\left( {3\sqrt 2 ;4} \right)\)nên ta có
\(\frac{{{{\left( {3\sqrt 2 } \right)}^2}}}{{{a^2}}} - \frac{{{4^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{18}}{{{a^2}}} - \frac{{16}}{{{b^2}}} = 1\) (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được
\(\frac{{18}}{{25 - t}} - \frac{{16}}{t} = 1\)
⇒ 18t – 16(25 – t) = (25 – t)t
⇔ 18t – 400 + 16t = 25t – t2
⇔ t2 + 9t – 400 = 0
⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)
Do đó, b2 = t = 16, a2 = 25 – t = 9.
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

