Giải SBT Toán 10 Bài 22. Ba đường conic có đáp án
29 người thi tuần này 4.6 1 K lượt thi 12 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\) của (E) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 36}\\{{b^2} = 16}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} - {b^2}} = 2\sqrt 5 \)
Vậy (E) có hai tiêu điểm là: \({F_1}\left( { - 2\sqrt 5 ;0} \right),{F_2}\left( {2\sqrt 5 ;0} \right)\)và có tiêu cự là: \(2c = 4\sqrt 5 \).
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{20}} = 1\) của (H) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 16}\\{{b^2} = 20}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} + {b^2}} = 6\)
Vậy (H) có hai tiêu điểm là F1 (–6; 0), F2(6; 0) và có tiêu cự là 2c = 12.
Lời giải
Hướng dẫn giải
Dựa vào phương trình chính tắc y2 = 4x của (P) ta có:
2p = 4 ⇔ p = 2 ⇔ \(\frac{p}{2} = 1\) .
Vậy (P) có tiêu điểm là F(1; 0) và có đường chuẩn là Δ: x = –1.
Lời giải
Hướng dẫn giải
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0)
Vì (E) đi qua điểm A(6; 0) nên ta có \(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\) ⇔ a2 = 62
Do (E) có tiêu cự là 2c = 8 nên ta có c = 4 ⇒ b2 = a2 – c2 = 62 – 42 = 20.
Vậy phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1\).
Lời giải
Hướng dẫn giải
Phương trình chính tắc của (H) có dạng: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a, b > 0)
Do (H) có một tiêu điểm là F2(5; 0) nên ta có:
c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2
Vì (H) đi qua điểm \(M\left( {3\sqrt 2 ;4} \right)\)nên ta có
\(\frac{{{{\left( {3\sqrt 2 } \right)}^2}}}{{{a^2}}} - \frac{{{4^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{18}}{{{a^2}}} - \frac{{16}}{{{b^2}}} = 1\) (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được
\(\frac{{18}}{{25 - t}} - \frac{{16}}{t} = 1\)
⇒ 18t – 16(25 – t) = (25 – t)t
⇔ 18t – 400 + 16t = 25t – t2
⇔ t2 + 9t – 400 = 0
⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)
Do đó, b2 = t = 16, a2 = 25 – t = 9.
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

