Đề kiểm tra Toán 9 Chân trời sáng tạo Chương 1 có đáp án - Đề 2
29 người thi tuần này 4.6 233 lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn C
Ta viết phương trình \(\frac{{x + 3}}{{x - 3}} + \frac{{2x - 1}}{{3 - x}} = 5\) thành \(\frac{{x + 3}}{{x - 3}} - \frac{{2x - 1}}{{x - 3}} = 5\).
Do đó mẫu chung đơn giản nhất khi quy đồng mẫu thức hai vế của phương trình đó là \(x - 3\).
Câu 2
Lời giải
Chọn D
Giải phương trình:
\[ - 4\left( {x - 5} \right)\left( {9 - 3x} \right) = 0\]
\[\left( {x - 5} \right)\left( {9 - 3x} \right) = 0.\]
\[x - 5 = 0\] hoặc \[9 - 3x = 0\]
\[x = 5\] hoặc \[x = 3.\]
Như vậy, các nghiệm của phương trình đã cho là \[x = 5;\] \[x = 3.\]
Khi đó tập hợp tất cả các nghiệm của phương trình đã cho là \[S = \left\{ {5;\,\,3} \right\}.\]
Câu 3
Lời giải
Chọn C
• Thay \(x = 1\) và \(y = - 2\) vào phương trình \(x + 2y = - 3\) ta được \(1 + 2 \cdot \left( { - 2} \right) = - 3\) (thỏa mãn).
Do đó \(\left( {1; - 2} \right)\)là nghiệm phương trình.
• Thay \(x = - 2\) và \(y = - 0,5\) vào phương trình \(x + 2y = - 3\) ta được \( - 2 + 2\left( { - 0,5} \right) = - 3\) (thỏa mãn).
Do đó \(\left( { - 2; - 0,5} \right)\) là nghiệm phương trình.
• Tương tự thì cặp số \(\left( {3; - 3} \right)\) không phải là nghiệm của phương trình.
• Tương tự thì cặp số \(\left( { - 5;1} \right)\) là nghiệm của phương trình.
Câu 4
A. đồ thị của hàm số \(y = 3x - 1\).
B. đồ thị của hàm số \[x = \frac{1}{3}.\]
Lời giải
Chọn B
Từ phương trình \(3x - 0y = 1\) ta có \(3x = 1\) suy ra \[x = \frac{1}{3}\].
Do đó, tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đồ thị của hàm số \[x = \frac{1}{3}.\]
Câu 5
Lời giải
Chọn C
Vì đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {1;\,\,13} \right)\) nên ta có \(13 = a \cdot 1 + b\) hay \(a + b = 13\).
Vì đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 5;\,\,1} \right)\) nên ta có \(1 = a \cdot \left( { - 5} \right) + b\) hay \( - 5a + b = 1\).
Khi đó, ta có hệ phương trình \[\left\{ \begin{array}{l}a + b = 13\\ - 5a + b = 1\end{array} \right.\]
Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(6a = 12,\) suy ra \(a = 2.\)
Thay \(a = 2\) vào phương trình \(a + b = 13,\) ta được: \(2 + b = 13\) nên \(b = 11.\)
Vậy \(a = 2\) và \(b = 11.\)
Câu 6
A. \[\left\{ \begin{array}{l}x + y = 750\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
B. \[\left\{ \begin{array}{l}x + y = 750\\8x + 9y = 6\,\,300.\end{array} \right.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.