Bộ 10 đề thi giữa kì 2 Toán 9 Chân trời sáng tạo có đáp án - Đề 06
10 người thi tuần này 4.6 2.3 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1. a) Xét các phương trình trên, ta có phương trình bậc hai một ẩn là: \( - {x^2} - \frac{3}{2}x - \frac{1}{2} = 0;\)
\( - 3{x^2} + 4\sqrt 6 x - 4 = 0.\)
• Với phương trình \( - {x^2} - \frac{3}{2}x - \frac{1}{2} = 0\) có \(a = - 1,b = - \frac{3}{2},c = - \frac{1}{2}.\)
• Với phương trình \( - 3{x^2} + 4\sqrt 6 x - 4 = 0\) có \(a = - 3,b = - 4\sqrt 6 ,c = - 4.\)
b) Giải phương trình:
• Ta có: \( - {x^2} - \frac{3}{2}x - \frac{1}{2} = 0\) hay \( - 2{x^2} - 3x - 1 = 0\) có \(a - b + c = - 2 - \left( { - 3} \right) + \left( { - 1} \right) = 0\).
Do đó, phương trình có hai nghiệm là \(x = - 1\) và \(x = - \frac{1}{2}\).
Vậy nghiệm của phương trình \( - {x^2} - \frac{3}{2}x - \frac{1}{2} = 0\) là \(\left\{ { - 1; - \frac{1}{2}} \right\}\).
• Ta có: \( - 3{x^2} + 4\sqrt 6 x - 4 = 0\) hay \( - {\left( {\sqrt 3 x - 2} \right)^2} = 0\) suy ra \(\sqrt 3 x - 2 = 0\) nên \(x = \frac{{2\sqrt 3 }}{3}\).
Vậy phương trình \( - 3{x^2} + 4\sqrt 6 x - 4 = 0\) có nghiệm là \(\left\{ {\frac{{2\sqrt 3 }}{3}} \right\}.\)
2. Gọi \(x\) (g/cm3) là khối lượng riêng của chất lỏng I \(\left( {x > 0,2} \right).\)
Khi đó, khối lượng riêng của chất lỏng II là \(x - 0,2\) (g/cm3).
Thể tích của chất lỏng I là: \(\frac{8}{x}\) (cm3).
Thể tích của chất lỏng II là: \(\frac{6}{{x - 0,2}}\) (cm3).
Khối lượng hỗn hợp sau khi trộn là: \(8 + 6 = 14\) (g).
Thể tích của hỗn hợp sau khi trộn là: \(\frac{{14}}{{0,7}} = 20\) (cm3).
Ta có phương trình: \(\frac{8}{x} + \frac{6}{{x - 0,2}} = 20\).
Giải phương trình:
\(\frac{8}{x} + \frac{6}{{x - 0,2}} = 20\)
\(\frac{{8\left( {x - 0,2} \right)}}{{x\left( {x - 0,2} \right)}} + \frac{{6x}}{{x\left( {x - 0,2} \right)}} = \frac{{20x\left( {x - 0,2} \right)}}{{x\left( {x - 0,2} \right)}}\)
\(8\left( {x - 0,2} \right) + 6x = 20x\left( {x - 0,2} \right)\)
\(8x - 1,6 + 6x = 20{x^2} - 4x\)
\(20{x^2} - 18x + 1,6 = 0\)
\(50{x^2} - 45x + 4 = 0\)
Phương trình có \(\Delta = {\left( { - 45} \right)^2} - 4 \cdot 50 \cdot 4 = 1\,\,225 > 0\) và \(\sqrt \Delta = 35.\)
Phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{45 + 35}}{{2 \cdot 50}} = 0,8\) (thỏa mãn); \({x_2} = \frac{{45 - 35}}{{2 \cdot 50}} = 0,1\) (không thỏa mãn).
Vậy khối lượng riêng của chất lỏng I là \(0,8\) g/cm3; khối lượng riêng của chất lỏng I là \(0,8 - 0,2 = 0,6\) (g/cm3).
Lời giải
a) Thay \(x = 1,y = - 2\) vào \(\left( P \right)\), ta được: \(a = - 2\).
Vậy hàm số đi qua điểm \(A\left( {1; - 2} \right)\) là \(y = - 2{x^2}\).
b) Ta có bảng giá trị của hàm số \(y = - 2{x^2}\) như sau:
\(x\) |
\( - 2\) |
\( - 1\) |
\(0\) |
\(1\) |
\(2\) |
\(y\) |
\( - 8\) |
\( - 2\) |
\(0\) |
\( - 2\) |
\( - 8\) |
Do đó, đồ thị hàm số đi qua các điểm có tọa độ là \(\left( { - 2; - 8} \right);\left( { - 1; - 2} \right);\left( {0;0} \right);\) \(\left( {1; - 2} \right);\left( {2; - 8} \right)\).
Ta có đồ thị hàm số như sau:

c) Thay \(x = \frac{2}{3}\) vào \(\left( P \right)\), ta có: \(y = - 2.{\left( {\frac{2}{3}} \right)^2}\) hay \(y = \frac{{ - 8}}{9}\).
Do đó, điểm thuộc \(\left( P \right)\) có hoành độ là \(\frac{2}{3}\) đó là \(\left( {\frac{2}{3};\frac{{ - 8}}{9}} \right)\).
d) Nhận thấy điểm cách đều hai trục tọa độ nằm trên đường thẳng \(y = x\) hoặc \(y = - x.\)
Xét phương trình hoành độ giao điểm của \(\left( P \right):y = - 2{x^2}\) và đường thẳng \(y = x\), ta có:
\( - 2{x^2} = x\) nên \( - 2{x^2} - x = 0\) hay \(x\left( { - 2x - 1} \right) = 0\). Do đó, \(x = 0\) hoặc \(x = \frac{{ - 1}}{2}\).
• Với \(x = 0\) thì \(y = 0\), suy ra điểm \(O\left( {0;0} \right)\).
• Với \(x = - \frac{1}{2}\) thì \(y = \frac{{ - 1}}{2}\), suy ra điểm \(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\).
Xét phương trình hoành độ giao điểm của \(\left( P \right):y = - 2{x^2}\) và đường thẳng \(y = - x\) ta có:
\( - 2{x^2} = - x\) nên \( - 2{x^2} + x = 0\) hay \(x\left( { - 2x + 1} \right) = 0\). Do đó, \(x = 0\) hoặc \(x = \frac{1}{2}.\)
• Với \(x = 0\) thì \(y = 0\), suy ra điểm \(O\left( {0;0} \right)\).
• Với \(x = \frac{1}{2}\) thì \(y = \frac{{ - 1}}{2}\), suy ra điểm \(B\left( {\frac{1}{2}; - \frac{1}{2}} \right)\).
Vậy có điểm \(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\); \(B\left( {\frac{1}{2}; - \frac{1}{2}} \right)\) nằm trên \(\left( P \right)\) cách đều hai trục tọa độ.
Lời giải
a) Với \(m = \frac{1}{2}\), ta có: \({x^2} - \left( {2.\frac{1}{2} - 1} \right)x + {\left( {\frac{1}{2}} \right)^2} - 7 = 0\) suy ra \({x^2} - \frac{{27}}{4} = 0\) hay \({x^2} = \frac{{27}}{4}\).
Do đó, \(x = \frac{{3\sqrt 3 }}{2}\) hoặc \(x = \frac{{ - 3\sqrt 3 }}{2}\).
Vậy với \(m = \frac{1}{2}\) thì phương trình có nghiệm là \(\left\{ {\frac{{3\sqrt 3 }}{2};\frac{{ - 3\sqrt 3 }}{2}} \right\}\).
b) Xét phương trình \({x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\) có :
\(\Delta = {\left[ { - \left( {2m - 1} \right)} \right]^2} - 4\left( {{m^2} - 7} \right) = - 4m + 29\).
Để phương trình có nghiệm kép thì \(\Delta = 0\) hay \( - 4m + 29 = 0\), do đó \(m = \frac{{29}}{4}\).
Vậy phương trình có nghiệm kép khi \(m = \frac{{29}}{4}\).
c) Xét phương trình \({x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\) \(\left( * \right)\)
Ta có: \(\Delta = {\left( {2m - 1} \right)^2} - 4 \cdot 1 \cdot \left( {{m^2} - 7} \right) = 4{m^2} - 4m + 1 - 4{m^2} + 28 = - 4m + 29\).
Để phương trình \(\left( * \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\) thì \(\Delta > 0,\) tức là \( - 4m + 29 > 0\) hay \(m < \frac{{29}}{4}.\)
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\,\,\,\,\,\,\,\left( 1 \right)\\{x_1}{x_2} = {m^2} - 7\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Theo bài, \(4{x_1}^2 - {x_1} - 3x_2^2 + {x_2} = {x_1}{x_2}\)
\(4{x_1}^2 - 4x_2^2 - {x_1} + x_2^2 + {x_2} - {x_1}{x_2} = 0\)
\[4\left( {{x_1}^2 - x_2^2} \right) + {x_2}\left( {{x_2} - {x_1}} \right) + {x_2} - {x_1} = 0\]
\(4\left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) + \left( {{x_2} - {x_1}} \right)\left( {{x_2} + 1} \right) = 0\)
\(\left( {{x_1} - {x_2}} \right)\left( {4{x_1} + 4{x_2} - {x_2} - 1} \right) = 0\)
\(\left( {{x_1} - {x_2}} \right)\left( {4{x_1} + 3{x_2} - 1} \right) = 0\)
Xét trường hợp 1: \({x_1} - {x_2} = 0\) suy ra \({x_1} = {x_2}\) (loại do \({x_1} \ne {x_2}).\)
Xét trường hợp 2: \(4{x_1} + 3{x_2} - 1 = 0\) suy ra \({x_1} + 3\left( {{x_1} + {x_2}} \right) - 1 = 0\) \(\left( {**} \right)\)
Thay \({x_1} + {x_2} = 2m - 1\) vào \(\left( {**} \right)\) ta có: \({x_1} + 3\left( {2m - 1} \right) - 1 = 0\) hay \({x_1} = - 6m + 4\).
Thay \({x_1} = - 6m + 4\) vào \(\left( 1 \right)\) ta được \( - 6m + 4 + {x_2} = 2m - 1\), suy ra \({x_2} = 8m - 5.\)
Thay \({x_1} = - 6m + 4\) và \({x_2} = 8m - 5\) vào \(\left( 2 \right)\) ta được:
\(\left( { - 6m + 4} \right)\left( {8m - 5} \right) = {m^2} - 7\)
\( - 48{m^2} + 30m + 32m - 20 = {m^2} - 7\)
\( - 49{m^2} + 62m - 13 = 0\)
\(m = 1\) (thỏa mãn); \(m = \frac{{13}}{{49}}\) (thỏa mãn).
Vậy với \(m = \left\{ {1;\,\,\frac{{13}}{{49}}} \right\}\) thỏa mãn yêu cầu bài toán.
Lời giải
1. Gọi \[H\] là hình chiếu của \[A\] trên \[Oy.\] Ta có \(A\left( {2;\,\,3} \right)\) nên \(AH = \left| 2 \right| = 2\) và \[OH = \left| 3 \right| = 3.\]

Xét \[\Delta AOH\] vuông tại \[H,\] theo định lí Pythagore ta có:
\[O{A^2} = O{H^2} + A{H^2}\]
Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{3^2} + {2^2}} = \sqrt {13} .\)
Ta cũng có \(\sin \widehat {AOH} = \frac{{AH}}{{OA}} = \frac{2}{{\sqrt {13} }}.\)
Giả sử phép quay \(90^\circ \) ngược chiều kim đồng hồ quanh gốc tọa độ biến điểm \(A\) (ở góc phần tư thứ I) thành điểm \(B\).
Khi đó, điểm \(B\) nằm ở góc phần tư thứ II và \(OB = OA = \sqrt {13} ,\,\,\widehat {AOB} = 90^\circ .\)
Ta có \(\widehat {AOB} = \widehat {AOH} + \widehat {BOH} = 90^\circ \) nên \(\cos \widehat {BOH} = \sin \widehat {AOH} = \frac{2}{{\sqrt {13} }}.\)
Xét \(\Delta OBK\) vuông tại \(K\) (gọi \(K\) là hình chiếu của điểm \(B\) trên \(Oy)\) ta có:
\(OK = OB \cdot \cos \widehat {BOH} = \sqrt {13} \cdot \frac{2}{{\sqrt {13} }} = 2.\)
Từ đó, ta có tung độ của điểm \(B\) là \(2\) (do \(B\) nằm ở góc phần tư thứ II).
Tương tự, ta tìm được hoành độ của điểm \(B\) là \( - 3.\)
Như vậy, phép quay ngược chiều \[90^\circ \] tâm \[O\] biến điểm \(A\left( {2;\,\,3} \right)\) thành điểm \[B\left( {--3;{\rm{ }}2} \right).\]
2. Giả sử \[ABCD\] là khung cổng hình chữ nhật \[(AB = CD = 3{\rm{\;m}}\] và \[AD = BC = 4{\rm{\;m}})\] nội tiếp nửa đường tròn \[\left( O \right)\] (hình vẽ).

Gọi \[H\] là trung điểm của \[CD.\]
Khi đó \(HB = HC = \frac{1}{2}BC = \frac{1}{2} \cdot 4 = 2{\rm{\;(m)}}\) và \[H\] nằm trên đường trung trực của \[BC.\]
Vì \[B,{\rm{ }}C\] cùng nằm trên nửa đường tròn \[\left( O \right)\] nên \[OB = OC,\] suy ra \[O\] nằm trên đường trung trực của \[BC.\]
Do đó \[OH\] là đường trung trực của đoạn thẳng \[BC,\] nên \[OH \bot BC.\]
Mà \[BC\,{\rm{//}}\,AD\] (do \[ABCD\] là hình chữ nhật) nên \[OH \bot AD.\]
Xét tứ giác \[ABHO\] có \(\widehat {OAB} = \widehat {AOH} = \widehat {OHB} = 90^\circ \) nên \[ABHO\] là hình chữ nhật.
Do đó \[OH = AB = 3{\rm{\;(m)}}{\rm{.}}\]
Xét \(\Delta OBH\) vuông tại \[H,\] theo định lí Pythagore, ta có: \(O{B^2} = O{H^2} + H{B^2} = {3^2} + {2^2} = 13.\)
Do đó \(OB = \sqrt {13} {\rm{\;m}}.\)
Nửa chu vi đường tròn \[\left( O \right)\] là: \[\pi \sqrt {13} {\rm{\;\;(m)}}{\rm{.}}\]
Lời giải
![Cho đường tròn \(\left( {O;R} \right).\) Từ điểm \(M\) nằm ngoài đường tròn \[\left( {O;R} \right),\] kẻ các tiếp tuyến \[MA\] và \[MB\] với đường tròn đó \[(A,{\rm{ }}B\] là các tiếp điểm) sao cho \(MA = R\sqrt 3 .\) a) Chứng minh rằng tứ giác \(AMBO\) nội tiếp đường tròn và tính bán kính đường tròn nội tiếp tam giác \(MAB.\) b) Vẽ đường thẳng \(d\) đi qua \[M\] cắt đường tròn \(\left( O \right)\) tại hai điểm \[P,{\rm{ }}Q\] sao cho \(P\) nằm giữa \(M\) và \(Q.\) Xác định vị trí của đường thẳng \[d\] sao cho \[MP + MQ\] đạt giá trị nhỏ nhất. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid4-1751341134.png)
a) Ta có \[MA,{\rm{ }}MB\] là các tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \[A\] và \[B\] nên \[MA \bot OA,{\rm{ }}MB \bot OB.\]
Xét \(\Delta OAM\) vuông tại \[A,\] theo định lí Pythagore, ta có:
\(O{M^2} = M{A^2} + O{A^2} = {\left( {R\sqrt 3 } \right)^2} + {R^2} = 4{R^2}\)
Suy ra \[OM = 2R.\]
Gọi \[I\] là giao điểm của \[\left( O \right)\] với tia \[OM,\] ta có \[OI = R\] nên \[IM = OM--OI = 2R--R = R.\]
Do đó, \[IM = IO = R\] nên \[I\] là trung điểm của \[OM.\]
Do \[\Delta OAM\] vuông tại \[A\] nên trung điểm \[I\] của cạnh huyền \[OM\] là tâm đường tròn ngoại tiếp \(\Delta OAM.\)
Do \[\Delta OBM\] vuông tại \[B\] nên trung điểm \[I\] của cạnh huyền \[OM\] là tâm đường tròn ngoại tiếp \[\Delta OBM.\]
Do đó bốn điểm \[A,{\rm{ }}M,{\rm{ }}B,{\rm{ }}O\] cùng nằm trên đường tròn \[\left( I \right)\] đường kính \[OM.\]
Vậy tứ giác \(AMBO\) nội tiếp đường tròn \[\left( I \right)\] đường kính \[OM.\]
Xét \[\Delta OAM\] vuông tại \[A,\] ta có: \(\sin \widehat {AMO} = \frac{{OA}}{{OM}} = \frac{1}{2}\). Suy ra \(\widehat {AMO} = 30^\circ .\)
Do \[MA,{\rm{ }}MB\] là hai tiếp tuyến của đường tròn \[\left( O \right)\] cắt nhau tại \[M\] nên \[MA = MB\] và \[MO\] là tia phân giác của góc \[AMB,\] suy ra \(\widehat {AMB} = 2\widehat {AMO} = 2 \cdot 30^\circ = 60^\circ .\)
Vì vậy tam giác \[AMB\] là tam giác đều có \(MA = MB = AB = R\sqrt 3 \) (1)
Theo chứng minh trên, ta có \(I\) là tâm đường tròn ngoại tiếp tam giác \[AMB.\] Tam giác đều \(MAB\) có \(I\) là tâm đường tròn ngoại tiếp nên cũng đồng thời là tâm đường tròn nội tiếp tam giác. (2)
Từ (1), (2) suy ra đường tròn nội tiếp tam giác đều \[MAB\] cạnh \(R\sqrt 3 \) có tâm là \[I\] và bán kính là \(\frac{{R\sqrt 3 \cdot \sqrt 3 }}{6} = \frac{R}{2}.\)
b) Ta có \(\widehat {MBO} = \widehat {MBP} + \widehat {PBO} = 90^\circ \) suy ra \(\widehat {MBP} = 90^\circ - \widehat {PBO}.\) (3)
Do \(\Delta OBP\) cân tại \[O\] (vì \[OB = OP)\] nên ta có:
\(\widehat {PBO} = \widehat {BPO} = \frac{{180^\circ - \widehat {BOP}}}{2} = 90^\circ - \frac{1}{2}\widehat {BOP}.\)
Xét đường tròn \[\left( O \right)\] có \(\widehat {BQP},\,\,\widehat {BOP}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung \[BP\] nên \(\widehat {BQP} = \frac{1}{2}\widehat {BOP}.\)
Do đó \(\widehat {PBO} = 90^\circ - \widehat {BQP}.\) Hay \(\widehat {BQP} = 90^\circ - \widehat {PBO}.\) (4)
Từ (3) và (4) suy ra \(\widehat {MBP} = \widehat {BQP}.\)
Xét \(\Delta MPB\) và \(\Delta MBQ\) có:
\(\widehat {BMQ}\) là góc chung, \(\widehat {MBP} = \widehat {MQB}\)
Do đó (g.g).
Suy ra \(\frac{{MB}}{{MQ}} = \frac{{MP}}{{MB}}\) hay \[MP \cdot MQ = M{B^2} = {\left( {R\sqrt 3 } \right)^2} = 3{R^2}.\]
Lại có \[{\left( {MQ--MP} \right)^2} \ge 0\] hay \[{\left( {MQ + MP} \right)^2} \ge 4MQ \cdot MP\]
Suy ra \[{\left( {MQ + MP} \right)^2} \ge 4 \cdot 3{R^2} = 12{R^2}\]
Do đó \(MQ + MP \ge \sqrt {12{R^2}} = 2R\sqrt 3 \) (dấu “=” xảy ra khi \[MQ = MP).\]
Vậy \[MP + MQ\] đạt giá trị nhỏ nhất bằng \(2R\sqrt 3 ,\) khi đó \[MQ = MP\] hay đường thẳng \[d\] đi qua \[M\] và \[A\] hoặc \[d\] đi qua \[M\] và \[B.\]