Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
960 người thi tuần này 4.6 5.6 K lượt thi 5 câu hỏi 50 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Cho số thực . Tìm giá trị nhỏ nhất (GTNN) của
Sai lầm thường gặp là: . Vậy GTNN của A là 2.
Nguyên nhân sai lầm: GTNN của A là 2 vô lý vì theo giả thuyết thì .
Cho số thực . Tìm giá trị nhỏ nhất (GTNN) của
Sai lầm thường gặp là: . Vậy GTNN của A là 2.
Nguyên nhân sai lầm: GTNN của A là 2 vô lý vì theo giả thuyết thì .
Lời giải
Lời giải đúng:
Dấu “=” xảy ra
Vậy GTNN của A là .
Vì sao chúng ta lại biết phân tích được như lời giải trên. Đây chính là kỹ thuật chọn điểm rơi trong bất đẳng thức.
Quay lại bài toán trên, dễ thấy a càng tăng thì A càng tăng. Ta dự đoán A đạt GTNN khi . Khi đó ta nói A đạt GTNN tại “Điểm rơi ” . Ta không thể áp dụng bất đẳng thức AM - GM cho hai số a và vì không thỏa quy tắc dấu “=”. Vì vậy ta phải tách a hoặc để khi áp dụng bất đẳng thức AM - GM thì thỏa quy tắc dấu “=”. Giả sử ta sử dụng bất đẳng thức AM - GM cho cặp số sao cho tại “Điểm rơi ” thì , ta có sơ đồ sau:
Khi đó: và ta có lời giải như trên.
Lời giải
Ta có:
Dấu “=” xảy ra
Vậy GTNN của A là
Lời giải
Ta có:
Dấu “=” xảy ra
Vậy GTNN của A là 39
Lời giải
Dấu “=” xảy ra
Vậy GTNN của A là 13
Lời giải
Áp dụng bất đẳng thức AM - GM ta có:
Cộng theo vế các bất đẳng thức trên ta được:
(đpcm)
1122 Đánh giá
50%
40%
0%
0%
0%