Bộ 12 đề thi học kì 2 Toán 7 Cánh Diều cấu trúc mới có đáp án - Đề 11
13 người thi tuần này 5.0 5.4 K lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Bảng số liệu thống kê số học sinh mẫu giáo của nước ta như sau:
Năm |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
Số học sinh (nghìn học sinh) |
\[3{\rm{ }}978,5\] |
\[4{\rm{ }}409,6\] |
\[4{\rm{ }}599,8\] |
\[4{\rm{ }}415,2\] |
\[4{\rm{ }}314,7\] |
\[4{\rm{ }}327,7\] |
\[3{\rm{ }}895,3\] |
b) Trong giai đoạn từ năm 2016 đến năm 2022, năm 2022 có số học sinh mẫu giáo ít nhất.
Số học sinh mẫu giáo năm 2022 đó giảm \(4327,7 - 3895,3 = 432,4\) (nghìn học sinh), tương ứng giảm \(\frac{{432,4}}{{4327,7}}.100\% \approx 10\% \) so với năm 2021.
c) Trong 7 năm từ năm 2016 đến năm 2022, có 3 năm có số học sinh mẫu giáo nhiều hơn \(4,4\) triệu học sinh (nhiều hơn \(4\,400\) nghìn học sinh) là năm \(2017;2018;2019\).
Xác suất để năm được chọn có số học sinh mẫu giáo nhiều hơn \(4,4\) triệu học sinh là \(\frac{3}{7}\).
Lời giải
a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(M = \left\{ {5;6;7;....;23;24} \right\}\).
Do đó, có 20 kết quả có thể xảy ra.
b) Các kết quả thuận lợi cho biến cố \(N\) là: \(5;7;9;....;21;23.\)
Do đó, có \(\left( {23 - 5} \right):2 + 1 = 10\) kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố \(N\) là \(\frac{{10}}{{20}} = \frac{1}{2}\).
c) Các kết quả thuận lợi cho biến cố \(P\) là: \(6;8;12;16;24\).
Do đó, có 5 kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố \(P\) là \(\frac{5}{{20}} = \frac{1}{4}.\)
Lời giải
a) Diện tích phần còn lại của khu vườn là: \(a\left( {a - 8} \right) - {b^2}{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
b) Diện tích phần còn lại của khu vườn khi \(a = 50{\rm{ m}}{\rm{, }}b = 10{\rm{ m}}\) là: \(50\left( {50 - 8} \right) - {10^2} = 2{\rm{ }}000{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Lời giải
a) \(A\left( x \right) = \frac{3}{4}{x^3} - 1 + \frac{3}{5}x + 4{x^2} + \frac{5}{4}{x^3} - \frac{8}{5}x + 4 + 7{x^2}\)
\( = \left( {\frac{3}{4} + \frac{5}{4}} \right){x^3} + \left( {4 + 7} \right){x^2} + \left( {\frac{3}{5} - \frac{8}{5}} \right)x - 1 + 4\)
\( = 2{x^3} + 11{x^2} - x + 3\).
b) Bậc của đa thức \(A\left( x \right)\) là 3.
Hệ số cao nhất của đa thức \(A\left( x \right)\) là 2.
c) \(B\left( x \right) = \left( {{x^2} + 1} \right)\left( {2x + 11} \right) - 5x - 8\)
0\( = 2{x^3} + 11{x^2} + 2x + 11 - 5x - 8\)
\( = 2{x^3} + 11{x^2} - 3x + 3\)
Ta có \(B\left( x \right) - C\left( x \right) = A\left( x \right)\).
Suy ra \(C\left( x \right) = B\left( x \right) - A\left( x \right)\)
\( = 2{x^3} + 11{x^2} - 3x + 3 - \left( {2{x^3} + 11{x^2} - x + 3} \right)\)
\( = 2{x^3} + 11{x^2} - 3x + 3 - 2{x^3} - 11{x^2} + x - 3\)
\( = - 2x\).
d) Để tìm nghiệm của đa thức \(C\left( x \right)\), ta cho \(C\left( x \right) = 0\)
Do đó \( - 2x = 0\)
Suy ra \(x = 0\).
Vậy nghiệm của đa thức \(C\left( x \right)\) là \(x = 0\).
Lời giải
5.1.
Trong tam giác \[ABC\] vuông tại \[A\] có \[AB = AC\] nên \[\Delta ABC\] vuông cân tại \[A.\]
Suy ra \[\widehat {ABC} = \widehat {ACB} = 45^\circ \].
Xét \[\Delta ADC\] có \[AC = DC\] nên \[\Delta ADC\] cân tại \[C\].
Suy ra \[\widehat {CDA} = \widehat {CAD} = x\].
Ta lại có \[\widehat {BCA}\] là góc ngoài của \[\Delta ADC\].
Suy ra \[\widehat {BCA} = \widehat {CDA} + \widehat {CAB} = x + x = 2x\].
Do đó, \[2x = 45^\circ \] nên \[x = 22,5^\circ \].
5.2.
![5.1. Tìm số đo \(x\) trong hình vẽ sau: 5.2. Cho tam giác \[ABC\] vuông tại \[A\] có \(\widehat C = 60^\circ \). Tia phân giác góc \(C\) cắt \[AB\] tại \[E\]. Kẻ \[EK\] vuông góc với \(BC\) tại \(K\). a) Chứng minh rằng \(\Delta ACE = \Delta KCE\) và \[AK \bot CE\]. b) Chứng minh rằng \[BC = 2AC\] và \(EB > AC\). c) Kẻ \[BD\] vuông góc với \(CE\) tại \(D\). Chứng minh ba đường thẳng \(AC,EK,BD\) đồng quy. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid0-1751274785.png)
a) Xét \(\Delta ACE\) và \(\Delta KCE\) có:
\(\widehat {CAE} = \widehat {CKE} = 90^\circ \);
\(EC\) là cạnh chung;
\(\widehat {ACE} = \widehat {KCE}\) (do \(CE\) là tia phân giác của \(\widehat {ACB}\)).
Do đó \(\Delta ACE = \Delta KCE\) (cạnh huyền – góc nhọn).
Suy ra \(EA = EK\) và \(CA = CK\) (các cặp cạnh tương ứng).
Do đó \(CE\) là đường trung trực của đoạn thẳng \(AK\) nên \(CE \bot AK\).
b) Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat {ABC} + \widehat {ACB} = 90^\circ \)
Suy ra \[\widehat {ABC} = 90^\circ - \widehat {ACB} = 30^\circ \].
Lại có \(CE\) là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {ACE} = \widehat {KCE} = 30^\circ \).
\(\Delta BCE\) có \(\widehat {ABC} = \widehat {ECB} = 30^\circ \) nên là tam giác cân tại \(E\).
\(\Delta BCE\) cân tại \(E\) có \(EK\) là đường cao nên đồng thời là đường trung tuyến, hay \(K\) là trung điểm của \(BC\).
Do đó \(BK = KC\) và \(BC = 2KC\)
Mà \(AC = KC\) (câu a) nên \(BC = 2AC\).
Xét \(\Delta BKE\) vuông tại \(K\) có \(BE\) là cạnh huyền nên là cạnh lớn nhất của tam giác
Do đó \(BE > BK\) mà \(BK = KC = AC\) nên \(BE > AC\).
c) Giả sử hai đường thẳng \(BD\) và \(AC\) cắt nhau tại \(I\).
Xét \(\Delta IBC\) có hai đường cao \(BA,CD\) cắt nhau tại \(E\) nên \(E\) là trực tâm của tam giác.
Suy ra \(IE \bot BC\).
Mà \(EK \bot BC\) nên ba điểm \(I,E,K\) thẳng hàng.
Vậy ba đường thẳng \(AC,EK,BD\) đồng quy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.