Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 12
8 người thi tuần này 4.6 5.7 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1.1.
a) \(\frac{2}{{ - x}} = \frac{4}{7}\) \( - 4x = 2.7\) \( - 4x = 14\) \(x = \frac{{ - 14}}{4}\) hay \(x = \frac{{ - 7}}{2}\). Vậy \(x = \frac{{ - 7}}{2}\). |
b) \(\frac{{0,25}}{{x + 2}} = \frac{{x + 2}}{4}\) (với \(x \ne - 2\)) \({\left( {x + 2} \right)^2} = 0,25.4\) \({\left( {x + 2} \right)^2} = 1\) \(x + 2 = 1\) hoặc \(x + 2 = - 1\) Suy ra \(x = - 1\) hoặc \(x = - 3\). Vậy giá trị của \(x\) thỏa mãn là \(\left\{ { - 1;3} \right\}.\) |
1.2. Gọi \(x,y\,\,\left( {\rm{g}} \right)\) lần lượt là khối lượng của thanh kim loại thứ nhất và thanh kim loại thứ hai.
Thanh thứ hai nặng hơn thanh thứ nhất \(15,6\,\,{\rm{g}}\) nên \(y - x = 15,6\).
Vì hai thanh kim loại đồng chất nên khối lượng và thể tích của mỗi thanh kim loại là hai đại lượng tỉ lệ thuận. Do đó, ta có \(\frac{x}{5} = \frac{y}{7}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{5} = \frac{y}{7} = \frac{{y - x}}{{7 - 5}} = \frac{{15,6}}{2} = 7,8\).
Suy ra \(x = 7.8.5 = 39\); \(y = 7,8.7 = 54,6\).
Vậy khối lượng của thanh kim loại thứ nhất và thanh kim loại thứ hai lần lượt là \(39\,\,{\rm{g}}\) và \(54,6\,\,{\rm{g}}\).
Lời giải
2.1. Thay \(x = 1,y = 3\) vào biểu thức \(A = \frac{{x + {y^2}}}{5} + xy\), ta được: \(A = \frac{{1 + {3^2}}}{5} + 1.3 = 5\).
Vậy giá trị của biểu thức \(A = 5\) khi \(x = 1,y = 3\).
2.2. a) \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\)
\( = \left( {2{x^4} - {x^4}} \right) - 6{x^3} + \left( {3{x^2} - {x^2}} \right) - x + 3\)
\( = {x^4} - 6{x^3} + 2{x^2} - x + 3\).
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\)
\( = - {x^4} + \left( {10{x^3} - 4{x^3}} \right) - 2{x^2} + 4x + 3\)
\( = - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 4, hệ số cao nhất là \(1\).
c) Ta có \(A\left( { - 1} \right) = {\left( { - 1} \right)^4} - 6.{\left( { - 1} \right)^3} + 2.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 3\)
\( = 1 + 6 + 2 + 1 + 3 = 13\)
\(B\left( 1 \right) = - {1^4} + {6.1^3} - {2.1^2} + 4.1 + 3\)
\( = - 1 + 6 - 2 + 4 + 3 = 10\)
Do \(13 > 10\) nên \(A\left( { - 1} \right) > B\left( 1 \right)\).
d) Ta có \(A\left( x \right) = M\left( x \right) - B\left( x \right)\)
Suy ra \(M\left( x \right) = A\left( x \right) + B\left( x \right)\)
\(M\left( x \right) = \left( {{x^4} - 6{x^3} + 2{x^2} - x + 3} \right) + \left( { - {x^4} + 6{x^3} - 2{x^2} + 4x + 3} \right)\)
\[ = {x^4} - 6{x^3} + 2{x^2} - x + 3 - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\]
\[ = \left( {{x^4} - {x^4}} \right) + \left( { - 6{x^3} + 6{x^3}} \right) + \left( {2{x^2} - 2{x^2}} \right) + \left( { - x + 4x} \right) + \left( {3 + 3} \right)\]
\[ = 3x + 6.\]
Để tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\)
Do đó \(3x + 6 = 0\), suy ra \(x = - 2\).
Vậ y \(x = - 2\) là nghiệm của đa thức \(M\left( x \right)\).
Lời giải
a) Biến cố chắc chắn là biến cố \(M\): “Tổng các số ghi trên hai quả bóng lớn hơn 2”, vì hai số nhỏ nhất ghi trên mỗi quả bóng lấy từ hai hộp lần lượt là \(1\) và \(2\) nên tổng các số gho trên hai quả bóng nhỏ nhất là \(3\), chắc chắn lớn hơn \(2.\)
Biến cố không thể là biến cố \(P\): “Chênh lệch giữa hai số ghi trên hai quả bóng bằng 10”. Vì chênh lệch lớn nhất giữa hai số lấy được trên mỗi quả bóng từ hai hộp là 9, khi hộp \(A\) lấy được số 1 và hộp \(B\) lấy được số \(10\).
b) Trong năm quả bóng từ hộp \(A\) ghi các số \(1;3;5;7;9\) có ba số nguyên tố là \(3;5;7\).
Do đó, xác suất của biến cố \(Q\) là \(\frac{3}{5}.\)
c) Trong năm quả bóng từ hộp \(B\) ghi các số \(2;4;6;8;10\) có các số là ước của \(16\) là: \(2;4;8\).
Do đó, xác suất của biến cố \(P\) là \(\frac{3}{5}.\)
Lời giải

a) Xét \(\Delta ABD\) và \(\Delta ACE\), có:
\(\widehat {ADB} = \widehat {AEC} = 90^\circ \);
\[AB = AC\] (do \(\Delta ABC\) cân tại \(A\));
\(\widehat {BAC}\) là góc chung.
Do đó \(\Delta ABD = \Delta ACE\) (cạnh huyền – góc nhọn).
Suy ra \(\widehat {ABD} = \widehat {ACE}\) (cặp góc tương ứng).
b) Ta có \(\widehat {ABD} = \widehat {ACE}\) (câu a)
Lại có \(\widehat {ABC} = \widehat {ACB}\) (do \(\Delta ABC\) cân tại \(A\)).
Do đó \(\widehat {ABC} - \widehat {ABD} = \widehat {ACB} - \widehat {ACE}\) hay \(\widehat {HBC} = \widehat {HCB}\).
\(\Delta BHC\) có \(\widehat {HBC} = \widehat {HCB}\) nên là tam giác cân tại \(H\).
Suy ra \(HB = HC\,\,\,\,\left( 1 \right)\)
Ta có \(\Delta HCD\) vuông tại \(D\) nên cạnh huyền \(HC\) là lớn nhất.
Do đó \(HC > HD\,\,\,\,\left( 2 \right)\).
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(HB > HD\).
c) Gọi \(I\) là giao điểm của \(BP\) và \(CQ\).
Xét \(\Delta BPH\) và \(\Delta CQH\), có:
\(HP = HQ\) (giả thiết);
\(\widehat {BHP} = \widehat {CHQ}\) (hai góc đối đỉnh);
\(HB = HC\) (câu b).
Do đó \(\Delta BPH = \Delta CQH\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\).
Suy ra \(\widehat {HBP} = \widehat {HCQ}\) (cặp góc tương ứng).
Mà \(\widehat {HBC} = \widehat {HCB}\) (câu b).
Suy ra \(\widehat {HBC} + \widehat {HBP} = \widehat {HCB} + \widehat {HCQ}\) hay \(\widehat {IBC} = \widehat {ICB}\).
\(\Delta IBC\) có \(\widehat {IBC} = \widehat {ICB}\) nên là tam giác cân tại \(I\).
Suy ra \(IB = IC\).
Mà \(AB = AC\) (câu a) và \(HB = HC\) (câu b).
Do đó ba điểm \(I\), \(A\), \(H\) cùng nằm trên đường trung trực của đoạn thẳng \(BC\).
Hay \(I\), \(A\), \(H\) thẳng hàng.
Vậy ba đường thẳng \(BP\), \(CQ\), \(AH\) đồng quy.
Lời giải
Vì xác suất thực nghiệm xuất hiện mặt sấp là \(\frac{4}{9} = \frac{{4k}}{{9k}}\) \(\left( {k \in {\mathbb{N}^*}} \right)\).
Do đó, tổng số lần tung đồng xu là \(9.k\) (lần).
Số lần xuất hiện mặt sấp là \(4.k\) (lần)
Suy ra số lần xuất hiện mặt ngửa là \(9.k - 4.k = 5.k\) (lần).
Mà tích số lần xuất hiện mặt ngửa và mặt sấp là \(500\) nên ta có: \(4k.5k = 500\) hay \(20.{k^2} = 500\).
Suy ra \({k^2} = 25\) và \(k = 5\)\(\left( {k \in {\mathbb{N}^*}} \right)\).
Do đó, bạn Hanh đã tung đồng xu số lần là: \(9.5 = 45\) (lần).