10 Bài tập Xác định loại tam giác dựa vào số đo góc của tam giác đó (có lời giải)
35 người thi tuần này 4.6 258 lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)
Hay \(\widehat A = 180^\circ - 67^\circ - 42^\circ = 71^\circ \)
Ta thấy 42° < 67° < 71° < 90° nên góc A, góc B, góc C đều là góc nhọn.
Vậy \(\widehat A = 71^\circ \) và tam giác ABC là tam giác nhọn.
Lời giải
Đáp án đúng là: D
Ta có \(\widehat {ADB}\) và \(\widehat {ADC}\) là hai góc kề bù nên \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (tính chất hai góc kề bù)
Suy ra \(\widehat {ADB} = 180^\circ - \widehat {ADC}\)
Hay \(\widehat {ADB} = 180^\circ - 60^\circ = 120^\circ > 90^\circ \)
Do đó góc ADB là góc tù
Vậy tam giác ABD là tam giác tù.
Lời giải
Đáp án đúng là: D

Kéo dài MN cắt Py tại Q.
Vì Mx // Py nên ta có: \(\widehat {xMQ} = \widehat {MQP}\) (hai góc so le trong)
Mà \(\widehat {xMQ} = 60^\circ \) do đó \(\widehat {MQP} = 60^\circ \)
Xét tam giác NPQ có \(\widehat {MNP}\) là góc ngoài của tam giác tại đỉnh N
Nên \(\widehat {MNP} = \widehat {NPQ} + \widehat {NQP}\) (tính chất góc ngoài của tam giác)
Suy ra \(\widehat {MNP} = 34^\circ + 60^\circ = 94^\circ > 90^\circ \)
Do đó góc MNP là góc tù
Vậy \(\widehat {MNP} = 94^\circ \) và tam giác MNP là tam giác tù.
Lời giải
Đáp án đúng là: C
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)
Hay \(\widehat A = 180^\circ - 50^\circ - 40^\circ = 90^\circ \)
Xét hai đường thẳng DE và AB có: \(\widehat {BAE} = \widehat {AED}\)
Mà hai góc này ở vị trí so le trong
Do đó DE // AB
Suy ra \(\widehat {EDC} = \widehat A\) (hai góc ở vị trí đồng vị)
Mà \(\widehat A = 90^\circ \)
Do đó \(\widehat {EDC} = 90^\circ \)
Vậy tam giác CDE là tam giác vuông.
Lời giải
Đáp án đúng là: A
Tam giác AIC vuông tại I \(\left( {\widehat I = 90^\circ } \right)\) nên \(\widehat A + \widehat {ACI} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)
Suy ra \(\widehat A = 90^\circ - \widehat {ACI}\) (1)
Tam giác CHK vuông tại K \(\left( {\widehat K = 90^\circ } \right)\) nên \(\widehat {CHK} + \widehat {KCH} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)
Suy ra \(\widehat {CHK} = 90^\circ - \widehat {KCH}\) (2)
Mà \(\widehat {ACI}\) chính là góc \(\widehat {KCH}\) (3)
Từ (1), (2) và (3) ta có: \(\widehat {CHK} = \widehat A = 60^\circ \)
Lại có \(\widehat {CHK}\) và \(\widehat {BHC}\) là hai góc kề bù nên \(\widehat {CHK} + \widehat {BHC} = 180^\circ \) (tính chất hai góc kề bù)
Suy ra \(\widehat {BHC} = 180^\circ - \widehat {CHK}\)
Do đó \(\widehat {BHC} = 180^\circ - 60^\circ = 120^\circ > 90^\circ \)
Khi đó góc BHC là góc tù
Vậy tam giác BHC là tam giác tù.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
52 Đánh giá
50%
40%
0%
0%
0%