Bài tập Cuối chương 6 có đáp án
39 người thi tuần này 4.6 1.1 K lượt thi 11 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
Đề kiểm tra Tích vô hướng của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Đề kiểm tra Bài tập cuối chương IV (có lời giải) - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Biểu thức \(\frac{1}{{\sqrt {x - 2} }}\) có nghĩa khi x – 2 > 0 ⇔ x > 2.
Vậy tập xác định của hàm số đã cho là D = (2; + ∞).Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có các hệ số: a = – 1; b = 2, c = 3.
\(\frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.\left( { - 1} \right)}} = 1\)
y(1) = – 12 + 2 . 1 + 3 = 4.
Vậy tọa độ đỉnh của parabol là I(1; 4).
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Các hệ số a = 1 > 0, b = – 5, c = 4.
Ta có: \[\frac{{ - b}}{{2a}} = \frac{{ - \left( { - 5} \right)}}{{2.1}} = \frac{5}{2}\]
Do đó hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right)\) và đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\).
Mà (– ∞; 1) \( \subset \left( { - \infty ;\frac{5}{2}} \right)\) nên hàm số đã cho nghịch biến trên khoảng (– ∞; 1).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam thức bậc hai f(x) = x2 – 2mx + 4 có hệ số a = 1 > 0, ∆' = (– m)2 – 1 . 4 = m2 – 4.
Để f(x) > 0 (cùng dấu với hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆' < 0 hay m2 – 4 < 0.
⇔ m2 < 4 ⇔ – 2 < m < 2.
Trong các đáp án đã cho, ta thấy đáp án A. m = – 1 là thỏa mãn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) ta được:
2x2 – 3 = x2 – 2x + 1
⇔ x2 + 2x – 4 = 0
⇔ x = \( - 1 - \sqrt 5 \) hoặc \(x = - 1 + \sqrt 5 \).
Lần lượt thay các giá trị trên vào phương trình đã cho, ta thấy x = \( - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ { - 1 + \sqrt 5 } \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.