7 câu Trắc nghiệm Đường trung trực của một đoạn thẳng có đáp án (Thông hiểu)
23 người thi tuần này 4.6 1.4 K lượt thi 7 câu hỏi 30 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
30 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 1 có đáp án
17 Bài tập Xác định các cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía trên hình vẽ cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

M thuộc đường trung trực của đoạn thẳng AB nên MA = MB (tính chất đường trung trực)
Do đó tam giác MAB cân tại M
Mà nên tam giác MAB đều.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Ta có: K thuộc đường trung trực của MN (giả thiết)
Suy ra KM = KN (tính chất)
Chu vi ∆KMP = MP + PK + KM = MP + PK + KN = MP + PN = 9 + 16 = 25 (cm)
Vậy chu vi ∆KMP là 25 cm.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Xét hai tam giác vuông BAD và BMD có:
BD là cạnh chung
(vì BD là tia phân giác góc ABM)
Suy ra ∆BAD = ∆BMD (cạnh huyền – góc nhọn)
Do đó: BA = BM; AD = MD (2 cạnh tương ứng)
Vì BA = BM nên B thuộc đường trung trực của AM
AD = MD nên D thuộc đường trung trực của AM
Suy ra BD là đường trung trực của AM.
Vậy AB = AM là khẳng định sai.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Tam giác ABC đều nên AB = AC = BC = 20 (cm) (tính chất)
AD + DB = AB
Suy ra: 8 + DB = 20
DB = 20 – 8 = 12 (cm)
F thuộc đường trung trực của AD (giả thiết) nên FA = FD (tính chất)
Chu vi tứ giác BCFD = BC + CF + FD + DB
= BC + CF + FA + DB
= BC + CA + DB
= 20 + 20 + 12 = 52 (cm)
Vậy chu vi tứ giác BCFD là 52 cm.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi ba điểm phân biệt H, I, K thẳng hàng cùng thuộc đường thẳng p
Ta có: m là đường trung trực của HI (giả thiết) nên m ⊥ HI hay m ⊥ p (1)
n là đường trung trực của IK (giả thiết) nên n ⊥ IK hay n ⊥ p (2)
Từ (1) và (2) suy ra m // n.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.