10 bài tập Một số bài toán hàm hợp liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của hàm số của hàm có lời giải
27 người thi tuần này 4.6 127 lượt thi 10 câu hỏi 60 phút
🔥 Đề thi HOT:
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Ta có −1 ≤ cos5x ≤ 1 −1 ≤ 2cos5x + 1 ≤ 3.
Đặt t = 2cos5x + 1 với x ∈ [−2; 3] thì t ∈ [−1; 3].
Khi đó, y = f(2cos5x + 1) = f(t) với t ∈ [−1; 3].
Suy ra: M = 5; m = 0 M – 2m = 5.
Lời giải
Đáp án đúng là: D
Xét hàm số g(x) = x3 – 3x2 – 1; g'(x) = 3x2 – 6x.
Có g'(x) = 0 x = 0 hoặc x = 2 (đều thuộc (−1; 3)).
Ta có f(−1) = |g(−1)| = 5; f(0) = |g(0)| = 1; f(2) = |g(2)| = 5; f(3) = |g(3)| = 1.
Vậy \(\mathop {\max }\limits_{\left[ { - \,1;3} \right]} f\left( x \right) = 5\).
Lời giải
Đáp án đúng là: D
Ta có bảng biến thiên của hàm số y = f(x)
Ta có: g'(x) = −2f'(−2x + 3).
Có g'(x) = 0 \( \Leftrightarrow \left[ \begin{array}{l} - 2x + 3 = - 3\\ - 2x + 3 = 1\\ - 2x + 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\\x = 0\end{array} \right.\)
Ta có x = 1 là nghiệm bội chẵn nên ta có bảng biến thiên của hàm số g(x).
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số g(x) trên đoạn [0; 3] là g(0).
Lời giải
Đáp án đúng là: B
Đặt t = x2 – 2x. Ta có \[x \in \left[ { - \frac{3}{2};\frac{7}{2}} \right] \Leftrightarrow - \frac{5}{2} \le x - 1 \le \frac{5}{2} \Leftrightarrow 0 \le {\left( {x - 1} \right)^2} \le \frac{{25}}{4}\]
\[ \Leftrightarrow - 1 \le {\left( {x - 1} \right)^2} - 1 \le \frac{{21}}{4}\] nên \[t \in \left[ { - 1;\frac{{21}}{4}} \right]\].
Xét hàm số \[y = f\left( t \right),t \in \left[ { - 1;\frac{{21}}{4}} \right]\]
Từ bảng biến thiên suy ra:
\(m = \mathop {\min }\limits_{t \in \left[ { - 1;\frac{{21}}{4}} \right]} f\left( t \right) = f\left( 1 \right) = 2,M = \mathop {\max }\limits_{t \in \left[ { - 1;\frac{{21}}{4}} \right]} f\left( t \right) = f\left( {\frac{{21}}{4}} \right) = 5 \Rightarrow \frac{M}{m} > 2\).
Lời giải
Đáp án đúng là: A
Đặt \(t = \sqrt {2x - {x^2}} \), ta có \(0 \le t \le 1\).
Hàm số \(y = \sqrt {2x - {x^2}} \) trở thành y = f(t) với 0 ≤ t ≤ 1.
Dựa vào đồ thị ta suy ra M = −3; m = −5.
Vậy 2M – m = −1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.