12 bài tập Một số bài toán hàm hợp liên quan đến tính đơn điệu và cực trị có đáp án
101 người thi tuần này 4.6 617 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có y' = f'(5 – 2x) = −2f'(5 −2x).
Có y' = 0 Û −2f'(5 – 2x) = 0 Û \(\left[ \begin{array}{l}5 - 2x = - 3\\5 - 2x = - 1\\5 - 2x = 1\end{array} \right.\)Û \(\left[ \begin{array}{l}x = 4\\x = 3\\x = 2\end{array} \right.\).
Ta có f'(5 – 2x) < 0 Û \(\left[ \begin{array}{l}5 - 2x < - 3\\ - 1 < 5 - 2x < 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 4\\2 < x < 3\end{array} \right.\).
f'(5 – 2x) > 0 Û \(\left[ \begin{array}{l}5 - 2x > 1\\ - 3 < 5 - 2x < - 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x < 2\\3 < x < 4\end{array} \right.\).
Bảng biến thiên của hàm số y = f(5 – 2x)
Dựa vào bảng biến thiên ta thấy hàm số y = f(5 – 2x) đồng biến trên khoảng (2; 3) và (4; +∞).
Lời giải
Từ giả thiết, ta có bảng biến thiên của hàm số f(x)
Ta có g'(x) = −f'(3 – x).
Từ bảng biến thiên của hàm số f(x) ta có
g'(x) > 0 f'(3 – x) < 0 \( \Leftrightarrow \left[ \begin{array}{l}3 - x < - 1\\1 < 3 - x < 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 4\\ - 1 < x < 2\end{array} \right.\).
Như thế ta có bảng biến thiên của hàm số g(x)
Từ bảng biến thiên, ta nhận thấy hàm số g(x) có 1 điểm cực đại.
Câu 3
A. 1;
B. 2;
C. 3;
Lời giải
Đáp án đúng là: B
Có y' = −2x.f'(2 – x2).
Có y' > 0 \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\1 < 2 - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}2 - {x^2} < 1\\2 - {x^2} > 2\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\ - 1 < x < 1\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}x < - 1\\x > 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < x < 1\\x < - 1\end{array} \right.\].
Do đó hàm số đồng biến trên (0; 1). Khi đó a = 0; b = 1 và a + 2b = 2.
Câu 4
A. (1; +∞);
B. \(\left( {\frac{1}{2};1} \right)\);
C. \(\left( {0;\frac{1}{2}} \right)\);
Lời giải
Đáp án đúng là: B
Ta có g'(x) = −2f'(3 – 2x).
Có g'(x) > 0 f'(3 – 2x) < 0 1 < 3 – 2x < 2 \( \Leftrightarrow \frac{1}{2} < x < 1\).
Vậy hàm số đã cho đồng biến trên \(\left( {\frac{1}{2};1} \right)\).
Câu 5
A. (−2; −1);
B. \(\left( { - 1;\frac{3}{2}} \right)\);
C. (−1; 1);
Lời giải
Đáp án đúng là: D
Từ đồ thị hàm số trên, ta có bảng biến thiên như sau:
Þ f(x) < 0,∀x ≠ ±2.
Ta có g'(x) = 2f(x).f'(x).
\[g'\left( x \right) = 2f\left( x \right).f'\left( x \right) < 0 \Leftrightarrow f'\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < - 2\end{array} \right.\].
Vậy hàm số đã cho nghịch biến trên khoảng (1; 2).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Hàm số g(x) nghịch biến trên khoảng (−∞; −2);
B. Hàm số g(x) đồng biến trên khoảng (2; +∞);
C. Hàm số g(x) nghịch biến trên khoảng (−1; 0);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. 3;
B. 2;
C. 4;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. 0;
B. 1;
C. 2;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. 3;
B. 2;
C. 1;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.