10 Bài tập Ứng dụng tính liên tục của hàm số để chứng minh phương trình có nghiệm (có lời giải)
21 người thi tuần này 4.6 238 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b). Cần chú ý về các khoảng và đoạn khi xác định số nghiệm của phương trình.
Lời giải
Đáp án đúng là: C
Do chưa có thông tin về tính liên tục của f(x) tại x = 1 nên chưa thể đưa ra kết luận về tính liên tục của f(x).
Câu 3
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Lời giải
Đáp án đúng là: C
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b).
Lời giải
Đáp án đúng là: D
Xét hàm số f(x) = 3x2023 – 8x + 4.
Hàm số liên tục trên ℝ nên cũng liên tục trên đoạn [0; 1].
f(0) = 4; f(1) = ‒1 nên f(0) . f(1) < 0.
Vậy phương trình có nghiệm trong khoảng (0; 1).
Lời giải
Đáp án đúng là: C
Xét hàm số f(x) = 2x4 – 5x2 + x + 1.
Hàm số liên tục trên ℝ.
f(‒2) = 11; f(‒1) = ‒3; f(0) = 1; f(1) = ‒1; f(2) = 15.
Ta thấy f(‒2) . f(‒1) < 0; f(‒1) . f(0) < 0; f(0) . f(1) < 0 ; f(1) . f(2) < 0 nên phương trình đã cho có ít nhất một nghiệm trong các khoảng (‒2; ‒1); (‒1; 0); (0; 1) và (1; 2).
Vậy đáp án đúng là C.
Lời giải
Đáp án đúng là: C
Xét hàm số f(x) = x3 – 1000x2 + 0,01.
Hàm số liên tục trên ℝ.
f(‒1) = ‒1000,99; f(0) = 0,01; f(1) = ‒998,99.
Ta thấy f(‒1) . f(0) < 0; f(0) . f(1) < 0 nên phương trình đã cho có ít nhất một nghiệm trong các khoảng (‒1; 0) và (0; 1).
Vậy đáp án đúng là C.
Lời giải
Đáp án đúng là: D
Xét hàm số f(x) = 2x3 – 6x + 3.
Hàm số liên tục trên ℝ.
f(‒2) = ‒1; f(‒1) = 7; f(1) = ‒1; f(2) = 7.
Ta thấy f(‒2) . f(‒1) < 0; f(‒1) . f(1) < 0 và f(1) . f(2) < 0 nên phương trình đã cho có ít nhất một nghiệm trong các khoảng (–2; ‒1); (‒1; 1) và (1; 2).
Vậy phương trình có 3 nghiệm trên khoảng (–2; 2).
Lời giải
Đáp án đúng là: D
Xét hàm số f(x) = 2x2 + 6x + 4.
Hàm số liên tục trên ℝ nên cũng liên tục trên .
f(‒3) = 4; = .
Ta thấy f(‒3) . < 0 nên phương trình đã cho có ít nhất một nghiệm trong các khoảng .
Vậy đáp án D đúng.
Lời giải
Đáp án đúng là: C
Xét hàm số f(x) = x3 – 5x2 +7 và g(x) = x5 + x – 3.
Hàm số f(x) và g(x) liên tục trên ℝ.
f(‒1) = 1; f(‒2) = ‒21, vì f(‒1) . f(‒2) < 0 nên phương trình f(x) = 0 có nghiệm trong khoảng (‒1; ‒2).
g(1) = ‒1; g(2) = 31, vì vì g(1) . g(2) < 0 nên phương trình g(x) = 0 có nghiệm trong khoảng (1; 2).
Vậy đáp án C đúng.
Lời giải
Đáp án đúng là: C
Xét hàm số f(x) = m(x ‒ 1)(x + 2) + 2x + 1.
Hàm số f(x) liên tục trên ℝ nên cũng liên tục trên (‒2;1).
Ta có f(‒2) = ‒3; f(1) = 3, vì f(‒2) . f(1) < 0.
Suy ra phương trình f(x) = 0 có nghiệm trong khoảng (‒2; 1).
Vậy phương trình luôn có nghiệm với mọi m.
48 Đánh giá
50%
40%
0%
0%
0%