5 câu Trắc nghiệm Toán 10 chân trời sáng tạo Giải phương trình bậc hai một ẩn (Vận dụng) có đáp án
19 người thi tuần này 4.6 1.8 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. m ≥ 0;
B. m < 0;
C. m ∈ ℝ;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Vì x = 2m + 3 là một nghiệm của bất phương trình x2 + 2(m – 1)x + m2 – 3m + 4 ≤ 0 nên ta có:
(2m + 3)2 + 2(m – 1)(2m + 3) + m2 – 3m + 4 ≤ 0.
⇔ 4m2 + 12m + 9 + 2(2m2 + m – 3) + m2 – 3m + 4 ≤ 0.
⇔ 9m2 + 11m + 7 ≤ 0.
Tam thức bậc hai f(m) = 9m2 + 11m + 7 có ∆ = 112 – 4.9.7 = – 131 < 0.
Do đó f(m) vô nghiệm.
Ta lại có am = 9 > 0.
Vì vậy f(m) > 0, với mọi m ∈ ℝ.
Do đó bất phương trình f(m) = 9m2 + 11m + 7 ≤ 0 vô nghiệm.
Vậy không có m thỏa mãn yêu cầu bài toán.
Ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có tập xác định là ℝ khi và chỉ khi (2 – 3m)x2 + 2mx + m – 1 > 0 với mọi x ∈ ℝ.
Đặt f(x) = (2 – 3m)x2 + 2mx + m – 1.
Trường hợp 1: a = 0 ⇔ 2 – 3m = 0 ⇔ m = .
Với , ta có
Do đó không thỏa mãn.
Trường hợp 2: a ≠ 0.
Khi đó f(x) là tam thức bậc hai có:
∆’ = m2 – (2 – 3m)(m – 1)
= m2 – (–3m2 + 5m – 2)
= 4m2 – 5m + 2.
Để f(x) > 0 với mọi x ∈ ℝ thì a > 0 và ∆ < 0.
(1)
Ta giải bất phương trình 4m2 – 5m + 2 < 0 như sau:
Tam thức bậc hai g(m) = 4m2 – 5m + 2 có ∆ = (–5)2 – 4.4.2 = –7 < 0.
Do đó g(m) vô nghiệm.
Ta lại có am = 4 > 0.
Vì vậy g(m) > 0, với mọi giá trị của m ∈ ℝ.
Do đó không có giá trị nào của m thỏa mãn g(m) = 4m2 – 5m + 2 < 0.
Vì vậy không có giá trị nào của m để (1) thỏa mãn.
Kết hợp cả hai trường hợp, ta thu được m ∈ ∅.
Vậy ta chọn phương án C.
Câu 3
A. m ∈ (–∞; –2) \ {3};
B. m ∈ (–∞; –2] ∪ [2; +∞);
C. m ∈ [2; +∞) \ {3};
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình f(x) = (m2 – m – 6)x2 – 2(m + 2)x – 4 = 0.
+) Trường hợp 1: a = 0 ⇔ m2 – m – 6 = 0
⇔ m = 3 hoặc m = –2.
• Với m = 3, ta có 0.x2 – 2.(3 + 2)x – 4 = 0
⇔ –10x – 4 = 0 ⇔ x = .
Do đó m = 3 thỏa mãn.
• Với m = –2, ta có 0.x2 – 2(–2 + 2)x – 4 = 0.
⇔ 0.x – 4 = 0 (vô nghiệm)
Do đó m = –2 không thỏa mãn.
+) Trường hợp 2: a ≠ 0 ⇔ m ≠ 3 và m ≠ –2.
f(x) là tam thức bậc hai ẩn x có:
∆’ = (m + 2)2 – (m2 – m – 6).(–4)
= m2 + 4m + 4 + 4m2 – 4m – 24
= 5m2 – 20
Phương trình f(x) = 0 có nghiệm khi và chỉ khi ∆’ ≥ 0
⇔ 5m2 – 20 ≥ 0
Tam thức bậc hai f(m) = 5m2 – 20 có ∆ = 02 – 4.5.(–20) = 400 > 0.
Do đó f(m) có hai nghiệm phân biệt là: m1 = –2, m2 = 2.
Ta lại có a = 5 > 0.
Vì vậy:
⦁ f(m) dương với mọi m thuộc hai khoảng (–∞; –2) và (2; +∞);
⦁ f(m) âm với mọi m thuộc khoảng (–2; 2);
⦁ f(m) = 0 khi m = –2 hoặc m = 2.
Do đó bất phương trình 5m2 – 20 ≥ 0 có tập nghiệm là (–∞; –2] ∪ [2; +∞).
So với điều kiện m ≠ 3 và m ≠ –2, ta nhận m ∈ (–∞; –2) ∪ [2; +∞) \ {3}.
Kết hợp cả hai trường hợp, ta thu được m ∈ (–∞; –2) ∪ [2; +∞) \ {3}.
Vậy ta chọn phương án D.
Câu 4
A. Dưới 3 triệu đồng;
B. Từ 3 đến 4 triệu đồng;
C. Trên 4 triệu đồng;
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai I(x) = 200x2 – 1400x + 2400 có:
∆’ = (–700)2 – 200.2400 = 10 000 > 0.
Suy ra I(x) có hai nghiệm phân biệt là:

Ta lại có a = 200 > 0 và 0 ≤ x ≤ 5.
Vì vậy ta có bảng xét dấu sau:
|
x |
0 |
|
3 |
|
4 |
|
5 |
|
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Theo bảng xét dấu ta có:
⦁ I(x) dương với mọi x thuộc hai khoảng [0; 3) và (4; 5];
⦁ I(x) âm với mọi x thuộc khoảng (3; 4);
⦁ I(x) = 0 khi x = 3 hoặc x = 4.
Do đó doanh nghiệp đó không có lãi khi và chỉ khi I(x) ≤ 0.
Tức là khi x ∈ [3; 4].
Hay ta có thể nói là khi cửa hàng giảm giá từ 3 đến 4 triệu đồng thì doanh nghiệp đó không có lãi.
Vậy ta chọn phương án B.
Câu 5
A. Lớn hơn 10 m;
B. Lớn hơn 37,5 m;
C. Từ 10 m đến 65 m;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi x (m) là chiều dài của mảnh đất hình chữ nhật (x > 0).
Mảnh đất hình chữ nhật có chu vi là 150 m nên có nửa chu vi là 75 m.
Khi đó chiều rộng của mảnh đất là: 75 – x (m).
Do chiều dài luôn lớn hơn chiều rộng nên x > 75 – x hay x > 37,5.
Diện tích của mảnh đất là: x(75 – x) = –x2 + 75x (m2).
Theo đề ta có diện tích của mảnh đất đó lớn hơn 650 m2.
⇔ –x2 + 75x > 650.
+) Xét tam thức bậc hai f(x) = –x2 + 75x – 650 có:
∆ = 752 – 4.(–1).(–650) = 3025 > 0.
Suy ra f(x) có hai nghiệm phân biệt là:
Ta lại có a = –1 < 0 và x > 37,5 nên:
⦁ f(x) âm với mọi x thuộc hai khoảng (0; 37,5) và (65; +∞);
⦁ f(x) dương với mọi x thuộc khoảng (37,5; 65);
⦁ f(x) = 0 khi x = 37,5 hoặc x = 65.
Do đó bất phương trình –x2 + 75x – 650 ≥ 0 có tập nghiệm là [37,5; 65].
Khi đó chiều dài của mảnh đất phải từ 37,5 m đến 65 m thì diện tích của mảnh đất đó lớn hơn 650 m2.
Vậy ta chọn phương án D.