Bộ 5 đề thi giữa kì 1 Toán 9 Cánh diều cấu trúc mới có đáp án - Đề 4
21 người thi tuần này 4.6 133 lượt thi 21 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Dạng 1: Giải hệ phương trình bằng phương pháp đặt ẩn phụ
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Vì \(x - 3 \ne 0\) khi \(x \ne 3\) và \(x + 3 \ne 0\) khi \(x \ne - 3\) nên ĐKXĐ của phương trình \[2 + \frac{1}{{x - 3}} = \frac{5}{{x + 3}}\] là \(x \ne - 3\) và \(x \ne 3.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Điều kiện xác định: \[x \ne 5\] và \[x \ne - 5.\]
Ta có: \(\frac{3}{{4\left( {x - 5} \right)}} + \frac{{15}}{{50 - 2{x^2}}} = \frac{7}{{6x + 30}}\)
\(\frac{3}{{4\left( {x - 5} \right)}} - \frac{{15}}{{2\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{7}{{6\left( {x + 5} \right)}}\)
\(\frac{{9\left( {x + 5} \right)}}{{12\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{15.6}}{{12\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{14\left( {x - 5} \right)}}{{6\left( {x + 5} \right)\left( {x - 5} \right)}}\)
\[9\left( {x + 5} \right)--90 = 14\left( {x-5} \right)\]
\[9x + 45-90 = 14x-70\]
\[5x = 25\]
\[x = 5\] (loại).
Vậy phương trình đã cho vô nghiệm.
Câu 3
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
• Thay \[x = 2,{\rm{ }}y = - 3\] vào phương trình \[2x-5y = 19\] ta được: \[2 \cdot 2-5 \cdot \left( { - 3} \right) = 19.\]
Do đó cặp số \[\left( {2\,;\,\, - 3} \right)\] thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.
• Thay x = 1, y = 1 vào phương trình \[2x-5y = 19\] ta được: \[2 \cdot 1-5 \cdot 1 = 7 \ne 19.\]
Do đó, cặp số \[\left( {1\,;\,\,1} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.
• Thay \[x = 1,{\rm{ }}y = - 2\] vào phương trình \[2x-5y = 19\] ta được: \[2 \cdot 1-5 \cdot \left( { - 2} \right) = 12 \ne 19.\]
Do đó, cặp số \[\left( {1\,;\,\, - 2} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.
• Thay \[x = 12,{\rm{ }}y = - 1\] vào phương trình \[2x-5y = 19\] ta được \[2 \cdot 12 - 5 \cdot \left( { - 1} \right) = 27 \ne 19.\]
Do đó, cặp số \[\left( {12\,;\,\, - 1} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Nhân phương trình thứ nhất của hệ với 6, ta được phương trình mới \(3x - 3y = - 6,\) cộng với phương trình thứ hai ta được phương trình: \(0x = - 1\) (hoặc phương trình \(0y = - 1\)).
Phương trình trên vô nghiệm nên hệ phương trình đã cho vô nghiệm.
Như vậy, có 2 khẳng định đúng là (ii), (iii). Ta chọn phương án C.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \[a \le 60.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.