Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 7)
35 người thi tuần này 4.0 13.6 K lượt thi 14 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 10)
10 Bài tập Tìm giá trị đơn thức khi biết giá trị của biến (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 2)
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Câu 1-3 . (1,5 điểm) Cho biểu thức .
Lời giải
a) Ta có \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right).\)
\[{x^2} + x + 1 = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\]
Điều kiện: \[\left\{ \begin{array}{l}{x^3} - 1 \ne 0\\x - 1 \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \ne 0\\x - 1 \ne 0\end{array} \right.\], do đó \[x \ne 1\].
Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 1\].
Lời giải
b) Với \(x \ne 1\), ta có
\(P = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\)
\( = \frac{{6{x^2} + 8x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{6\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{6{x^2} + 8x + 7 + {x^2} - x - 6{x^2} - 6x - 6}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{1}{{x - 1}}.\)
Vậy với \(x \ne 1\) thì \(P = \frac{1}{{x - 1}}.\)
Lời giải
c) Thay \(x = \frac{1}{2}\) vào biểu thức \(P\), ta được:
\(P = \frac{1}{{x - 1}} = \frac{1}{{\frac{1}{2} - 1}} = \frac{1}{{ - \frac{1}{2}}} = - 2.\)
Vậy với \(x = \frac{1}{2}\) thì \(P = - 2.\)
Đoạn văn 2
Câu 4-5 . (2,5 điểm)
Lời giải
a) Gọi hàm số bậc nhất cần tìm là \(y = ax + b\,\,\left( {a \ne 0} \right).\)
Theo giả thiết, ta có
• Với \(x = 0\,;\,\,y = 1\) thì \(0a + b = 1\) hay \(b = 1\).
• Với \(x = 6\,;\,\,y = 2\) thì \(6a + 1 = 2\) hay \(a = \frac{1}{6}\).
Vậy \(\left( d \right):y = \frac{1}{6}x + 1\).
b) Giao điểm của đường thẳng \(d\) với trục tung có ý nghĩa là chi phí ban đầu người dùng trả cho nhà mạng là 1 triệu đồng.
Trong thời gian 12 tháng, người dùng phải trả số tiền là: \(\frac{1}{6} \cdot 12 + 1 = 3\) (triệu đồng).
Lời giải
Nửa chu vi của hình chữ nhật là: \[132:2 = 66\]\[\left( m \right)\].
Gọi \[x\]\[\left( m \right)\] là chiều dài của hình chữ nhật \[\left( {0 < x < 66} \right)\]
Chiều rộng của hình chữ nhật là \[66 - x\] \[\left( m \right)\].
Diện tích của hình chữ nhật là \[x\left( {66 - x} \right)\] \[\left( {{m^2}} \right)\]
Chiều dài của hình chữ nhật sau khi tăng là \[x + 8\] \[\left( m \right)\].
Chiều rộng của hình chữ nhật sau khi giảm là: \[66 - x - 4 = 62 - x\] \[\left( m \right)\].
Diện tích của hình chữ nhật lúc sau là: \[\left( {x + 8} \right)\left( {62 - x} \right)\]\[\left( {{m^2}} \right)\]
Theo đề bài, ta có phương trình:
\[\left( {x + 8} \right)\left( {62 - x} \right) = x\left( {66 - x} \right) + 52\]
\[ - {x^2} + 54x + 496 = - {x^2} + 66x + 52\]
\[66x - 54x = 496 - 52\]
\[12x = 444\]
\(x = 37\) (TMĐK)
Chiều rộng của hình chữ nhật là \[66 - 37 = 29\] \[\left( m \right)\].
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là \[37\,\,m\] và \[29\,\,m\].
Đoạn văn 3
Câu 6 - 8. (1,5 điểm) Bạn An gieo xúc xắc 80 lần. Bạn An đếm được có 13 lần xuất hiện mặt 2 chấm, 12 lần xuất hiện mặt 4 chấm và 14 lần xuất hiện mặt 6 chấm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 5
Câu 12-13 . (1,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.