Đề cương ôn tập cuối kì 1 Toán 12 Chân trời sáng tạo cấu trúc mới (có tự luận) có đáp án - Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
26 người thi tuần này 4.6 768 lượt thi 12 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Ôn tập chương 6 (có lời giải) - Đề 3
Đề kiểm tra Ôn tập chương 6 (có lời giải) - Đề 2
Đề kiểm tra Ôn tập chương 6 (có lời giải) - Đề 1
Đề kiểm tra Công thức xác suất toàn phần – công thức Bayes (có lời giải) - Đề 3
Đề kiểm tra Công thức xác suất toàn phần – công thức Bayes (có lời giải) - Đề 2
Đề kiểm tra Công thức xác suất toàn phần – công thức Bayes (có lời giải) - Đề 1
Đề kiểm tra Xác suất có điều kiện (có lời giải) - Đề 3
Đề kiểm tra Xác suất có điều kiện (có lời giải) - Đề 2
Danh sách câu hỏi:
Câu 1
A.\[2.\]
Lời giải
Từ đồ thị ta có: \[\left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 2} \right) = - 4\\M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 1} \right) = 2\end{array} \right. \Rightarrow M + m = - 2\]. Chọn D.
Câu 2
Lời giải
Ta có \(y' = 1 - \frac{4}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow {x^2} = 4 \Rightarrow x = 2\) (vì \(x \in \left( {1;5} \right)\)).
Khi đó \(y\left( 1 \right) = 5\), \(y\left( 2 \right) = 4\) và \(y\left( 5 \right) = \frac{{29}}{5}\).
Do đó \(\mathop {\min }\limits_{\left[ {1;5} \right]} y = 4\) tại \(x = 2\). Chọn B.
Câu 3
Lời giải
Ta có \(f'\left( x \right) = 3{x^2} - 16x + 16,f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4 \notin \left( {1;3} \right)\\x = \frac{4}{3} \in \left( {1;3} \right)\end{array} \right.\).
\(f\left( 1 \right) = 0;f\left( {\frac{4}{3}} \right) = \frac{{13}}{{27}};f\left( 3 \right) = - 6\).
Do đó \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = \frac{{13}}{{27}}\). Chọn B.
Câu 4
Lời giải
Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).
Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.
Câu 5
Lời giải
Vì \[s = \frac{1}{3}{t^3} - {t^2} + 9t \Rightarrow v = {t^2} - 2t + 9\].
Xét hàm \[f\left( t \right) = {t^2} - 2t + 9 \Rightarrow f'\left( t \right) = 2t - 2 = 0 \Rightarrow t = 1\].
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy: \[\mathop {\max }\limits_{\left[ {0;10} \right]} f\left( t \right) = f\left( {10} \right) = 89\].
Vậy vận tốc của vật đạt được lớn nhất bằng \[89\left( {{\rm{m/s}}} \right).\] Chọn A.
Câu 6
A. \(3\,\)(km/h).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Từ đồ thị ta có: \[\left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 2} \right) = - 4\\M = \mathop {\max }\limits_{\left[ { - 1 (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761388534.png)

