Bài tập Khoảng cách giữa các đường thẳng và mặt phẳng song song, hai mặt phẳng song song (có lời giải)
49 người thi tuần này 4.6 159 lượt thi 10 câu hỏi 45 phút
Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD=a√2 . Tính khoảng cách giữa đường thẳng DC và (SAB).
A. 2a√3
B. a√2
C. a√2
D. a√33
Đáp án đúng là: A

Do ABCD là hình vuông tại A, D nên AB // CD ⇒ CD // (SAB).
Do đó d(DC, (SAB)) = d(D, (SAB)).
Kẻ DH ^ SA tại H.
Vì SD ^ (ABCD) nên SD ^ AB mà AB ^ AD suy ra AB ^ (SAD) ⇒ AB ^ HD.
Lại có DH ^ SA nên DH ^ (SAB). Do đó d(D, (SAB)) = DH.
Trong tam giác vuông SAD vuông tại D, ta có: 1DH2=1SD2+1AD2=12a2+14a2=34a2
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
32 Đánh giá
50%
40%
0%
0%
0%