20 câu trắc nghiệm Toán 11 Chân trời sáng tạo Bài 4. Phương trình, bất phương trình mũ và logarit (Đúng sai - Trả lời ngắn) có đáp án
4.6 0 lượt thi 20 câu hỏi 60 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
A
3x – 1 = 27 Û x – 1 = 3 Û x = 4.
Vậy nghiệm của phương trình là x = 4.
Lời giải
C
Điều kiện \(\left\{ \begin{array}{l}x + 1 > 0\\2x - 1 > 0\end{array} \right.\)\( \Leftrightarrow x > \frac{1}{2}\).
\({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\)\( \Leftrightarrow x + 1 > 2x - 1\)\( \Leftrightarrow x < 2\).
Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình là \(S = \left( {\frac{1}{2};2} \right)\).
Lời giải
D
Điều kiện: x – 1 > 0 Û x > 1.
log2(x – 1) = 3 Û x – 1 = 8 Û x = 9 (thỏa mãn).
Vậy nghiệm của phương trình là x = 9.
Lời giải
A
\({\left( {\frac{1}{3}} \right)^{2x - 3}} < 9\)\( \Leftrightarrow {3^{ - 2x + 3}} < {3^2}\)\( \Leftrightarrow - 2x + 3 < 2\)\( \Leftrightarrow x > \frac{1}{2}\).
Lời giải
C
\({3^{{x^2} - 2x}} > 27\)\( \Leftrightarrow {3^{{x^2} - 2x}} > {3^3}\)\( \Leftrightarrow {x^2} - 2x > 3\)\( \Leftrightarrow {x^2} - 2x - 3 > 0\)\( \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 3\end{array} \right.\).
Vậy tập nghiệm của bất phương trình là S = (−∞; −1) È (3; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho bất phương trình log6(x + 4) < 2 + log6(7 – x).
a) Điều kiện xác định của bất phương trình là −4 < x < 7.
b) Bất phương trình đã cho tương đương với log6(x + 4) < log6(14 – 2x).
c) Tập nghiệm của bất phương trình là \(S = \left( {\frac{{15}}{4};7} \right)\).
d) Bất phương trình có 5 nghiệm nguyên.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho bất phương trình log6(x + 4) < 2 + log6(7 – x).
a) Điều kiện xác định của bất phương trình là −4 < x < 7.
b) Bất phương trình đã cho tương đương với log6(x + 4) < log6(14 – 2x).
c) Tập nghiệm của bất phương trình là \(S = \left( {\frac{{15}}{4};7} \right)\).
d) Bất phương trình có 5 nghiệm nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Xét hàm số \(f\left( x \right) = {\log _3}\left( {x + 2} \right) - {\log _{\frac{1}{3}}}\left( {x - 1} \right)\).
a) Điều kiện xác định của hàm số f(x) là x > 1.
b) Phương trình f(x) = 1 có một nghiệm duy nhất.
c) Tích hai nghiệm của phương trình f(x) = log3(6x – 9) bằng 3.
d) Bất phương trình \(f\left( x \right) > {\log _{\sqrt 3 }}\left( {x - 4} \right)\) có tập nghiệm S = (2; +∞).
Xét hàm số \(f\left( x \right) = {\log _3}\left( {x + 2} \right) - {\log _{\frac{1}{3}}}\left( {x - 1} \right)\).
a) Điều kiện xác định của hàm số f(x) là x > 1.
b) Phương trình f(x) = 1 có một nghiệm duy nhất.
c) Tích hai nghiệm của phương trình f(x) = log3(6x – 9) bằng 3.
d) Bất phương trình \(f\left( x \right) > {\log _{\sqrt 3 }}\left( {x - 4} \right)\) có tập nghiệm S = (2; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
Giả sử giá trị còn lại (tính theo triệu đồng) của một chiếc ô tô sau t năm sử dụng được mô hình hóa bằng công thức V(t) = A.(0,905)t, trong đó A là giá xe (tính theo triệu đồng) lúc mới mua. Hỏi nếu theo mô hình này, sau bao nhiêu năm sử dụng thì giá trị của chiếc xe đó còn lại không quá 300 triệu đồng (làm tròn kết quả đến hàng đơn vị)? Biết A = 780 (triệu đồng).
Giả sử giá trị còn lại (tính theo triệu đồng) của một chiếc ô tô sau t năm sử dụng được mô hình hóa bằng công thức V(t) = A.(0,905)t, trong đó A là giá xe (tính theo triệu đồng) lúc mới mua. Hỏi nếu theo mô hình này, sau bao nhiêu năm sử dụng thì giá trị của chiếc xe đó còn lại không quá 300 triệu đồng (làm tròn kết quả đến hàng đơn vị)? Biết A = 780 (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.