10 bài tập Sử dụng phép toán tổng, hiệu hai vectơ và tích của một vectơ với một số để chứng minh, phân tích các vectơ có lời giải
43 người thi tuần này 4.6 106 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \];
B. \[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\];
C. \[\overrightarrow {AG} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\];
D. \[\overrightarrow {AG} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Đáp án đúng là: C
Có G là trọng tâm của tứ diện ABCD nên:
\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \] \[ \Leftrightarrow 4\overrightarrow {GA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \overrightarrow 0 \]\[ \Leftrightarrow \overrightarrow {AG} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Câu 2
A. \[\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {AC} \];
B. \[\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {BD} \];
C. \[\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {AC'} \];
D. \[\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {CA} \].
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (quy tắc hình bình hành).
Câu 3
A. \[\overrightarrow 0 \];
B. \[2\overrightarrow {AD} \];
C. \[2\overrightarrow {MN} \];
D. \[2\overrightarrow {NM} \].
Lời giải
Đáp án đúng là: C
Ta có :
\(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NB} + \overrightarrow {DM} + \overrightarrow {MN} + \overrightarrow {NC} \)
\( = \left( {\overrightarrow {AM} + \overrightarrow {DM} } \right) + 2\overrightarrow {MN} + \left( {\overrightarrow {NB} + \overrightarrow {NC} } \right) = 2\overrightarrow {MN} \).
(vì M, N lần lượt là trung điểm của AD, BC nên \(\overrightarrow {AM} + \overrightarrow {DM} = \overrightarrow 0 ;\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)).
Câu 4
A. \[\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow d \];
B. \[\overrightarrow a = \overrightarrow b + \overrightarrow c \];
C. \[\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d = \overrightarrow 0 \];
D. \[\overrightarrow b - \overrightarrow c + \overrightarrow d = \overrightarrow 0 \].
Lời giải
Đáp án đúng là: D
Ta thấy \(\overrightarrow b - \overrightarrow c + \overrightarrow d = \overrightarrow {AB} - \overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {CB} + \overrightarrow {BC} = \overrightarrow 0 \).
Câu 5
A. \[\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MA} + \overrightarrow {MD} } \right)\];
B. \[\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MB} } \right)\];
C. \[\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right)\];
D. \[\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} - \overrightarrow {MD} } \right)\].
Lời giải
Đáp án đúng là: B
Gọi \(N\) là trung điểm BC thì G chính là trung điểm của MN. Do đó ta có:
\(\overrightarrow {MG} = \frac{1}{2}\overrightarrow {MN} = \frac{1}{4}\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\).
Câu 6
A. \[\overrightarrow {MP} = \frac{1}{2}\left( {\overrightarrow c + \overrightarrow d + \overrightarrow b } \right)\];
B. \[\overrightarrow {MP} = \frac{1}{2}\left( {\overrightarrow d + \overrightarrow b - \overrightarrow c } \right)\];
C. \[\overrightarrow {MP} = \frac{1}{2}\left( {\overrightarrow c + \overrightarrow b - \overrightarrow d } \right)\];
D. \[\overrightarrow {MP} = \frac{1}{2}\left( {\overrightarrow c + \overrightarrow d - \overrightarrow b } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\frac{1}{3}\left( {\overrightarrow a + 3\overrightarrow b + \overrightarrow c } \right)\];
B. \[\frac{1}{3}\left( {3\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\];
C. \[\frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + 3\overrightarrow c } \right)\];
D. \[\frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Cho hình lập phương ABCD.A'B'C'D'. Gọi O là tâm của hình lập phương. Khẳng định nào sau đây là đúng?
A. \[\overrightarrow {AO} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\];
B. \[\overrightarrow {AO} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\];
C. \[\overrightarrow {AO} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\];
D. \[\overrightarrow {AO} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. N là trung điểm BD;
B. N là đỉnh hình bình hành BCDN;
C. N là đỉnh hình bình hành CDBN;
D. N ≡ A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.