Đề cương ôn tập giữa kì 1 Toán 12 Cánh diều cấu trúc mới có đáp án - Bài 1. Tính đơn điệu và cực trị của hàm số
44 người thi tuần này 4.6 145 lượt thi 20 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Danh sách câu hỏi:
Câu 1
Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án.
Tìm khoảng đồng biến của hàm số: \[y = - {x^4} + 4{x^2} - 3\].
Lời giải
Hàm số đã cho xác định trên \[{\rm{D}} = \mathbb{R}\].
Có\[y' = - 4{x^3} + 8x\].
Cho \[y' = 0 \Leftrightarrow - 4{x^3} + 8x = 0 \Leftrightarrow 4x( - {x^2} + 2) = 0 \Leftrightarrow \left[ \begin{array}{l}4x = 0\\ - {x^2} + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\].
Bảng biến thiên :
Dựa vào bảng biến thiên, hàm số đồng biến trên: \[\left( { - \infty ; - \sqrt 2 } \right)\] và \[\left( {0;\sqrt 2 } \right)\]. Chọn C.
Câu 2
Lời giải
Hàm số đã cho xác định và liên tục trên: \[{\rm{D}} = \mathbb{R}\backslash \left\{ { - 7} \right\}\].
Tính\[y' = \frac{{\left( { - 2} \right).7 - 1.3}}{{{{\left( {x + 7} \right)}^2}}} = \frac{{ - 17}}{{{{\left( {x + 7} \right)}^2}}} < 0,\forall x \in {\rm{D}} = \mathbb{R}\backslash \left\{ { - 7} \right\}\].
Bảng biến thiên:
Hàm số đã cho luôn nghịch biến trên: \[\left( { - \infty ; - 7} \right)\] và \[\left( { - 7; + \infty } \right)\]. Chọn C.
Câu 3
Lời giải
Tập xác định \(D = \left[ {0;2} \right]\).
Ta có \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }}\); \(y' = 0 \Leftrightarrow x = 1\).
Bảng biến thiên:
Vậy hàm số nghịch biến trên khoảng \(\left( {1;2} \right)\). Chọn C.
Câu 4
Lời giải
Hàm số \[y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1\] có \(y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{{11}}{4} > 0,\,\forall x \in \mathbb{R}\). Chọn D.
Câu 5
Lời giải
(I): \(y' = - 3{x^2} + 6x - 3 = - 3{\left( {x - 1} \right)^2} \le 0,\forall x \in \mathbb{R}\).
(II):\(y' = \cos x - 2 < 0,\forall x \in \mathbb{R}\).
(III): \(y' = - \frac{{3{x^2}}}{{2\sqrt {{x^3} + 2} }} \le 0,\forall x \in \left( { - \sqrt[3]{2}; + \infty } \right)\).
(IV): \(y' = - \frac{1}{{{{\left( {1 - x} \right)}^2}}} < 0,\forall x \ne 1\). Chọn A.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.