10 bài tập Viết phương trình đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng cho trước có lời giải
34 người thi tuần này 4.6 101 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - t\\z = 3 + 3t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 - t\\z = - 3 + 3t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - 2t\\z = 3 + 3t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1 - 2t\\y = - 2 - t\\z = 3 - 3t\end{array} \right.\).
Lời giải
Đáp án đúng là: A
Đường thẳng cần tìm đi qua M(1; −2; 3), vuông góc với (P) nên nhận \(\overrightarrow {{n_P}} = \left( {2; - 1;3} \right)\) là vectơ chỉ phương.
Phương trình đường thẳng cần tìm là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - t\\z = 3 + 3t\end{array} \right.\).
Câu 2
A. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + 2t\\z = 3 - 3t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = - 2 - t\\z = 3 + 3t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = - 3 + 3t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1 - 2t\\y = 2 - t\\z = - 3 - 3t\end{array} \right.\).
Lời giải
Đáp án đúng là: C
Đường thẳng đi qua điểm M(1; 2; −3) và nhận \(\overrightarrow {{n_P}} = \left( {2; - 1;3} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = - 3 + 3t\end{array} \right.\).
Câu 3
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\\z = 2 - 3t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 - 2t\\z = 2 + t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = - 3 + 2t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 + t\\z = - 2 - 3t\end{array} \right.\).
Lời giải
Đáp án đúng là: A
Đường thẳng đi qua M(1; −2; 2) nhận \(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\\z = 2 - 3t\end{array} \right.\).
Câu 4
A. \(\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 3t\\z = 1 - t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 3t\\z = 1 + t\end{array} \right.\).
Lời giải
Đáp án đúng là: B
Vectơ chỉ phương của đường thẳng là \(\overrightarrow u = \left( {1;3; - 1} \right)\) nên suy ra chỉ có đáp án A hoặc B đúng. Thử tọa độ điểm A(2; 3; 0) vào ta thấy đáp án B thỏa mãn.
Câu 5
A. \({d_1}:\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\);
B. \({d_2}:\frac{x}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{{ - 1}}\);
C. \({d_3}:\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{{ - 1}}\);
D. \({d_4}:\left\{ \begin{array}{l}x = 2t\\y = 0\\z = - t\end{array} \right.\).
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {{n_\alpha }} = \left( {1; - 1;2} \right) = \overrightarrow {{u_{{d_1}}}} \). Do đó d1 (α).
Câu 6
A. \(\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 1\\y = 1\\z = 1 + t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 1 - t\\y = 1\\z = 1\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 1\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 5 + 2t\\z = 1 - t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 3 - 5t\\z = 1 + t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 5t\\z = 1 + t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 3 - 2t\\y = - 3 + 5t\\z = - t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - t\\z = 1 + t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - 4t\\z = 1 + 3t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - 2t\\z = 1 + t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - t\\z = 1 + 3t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \(\frac{{x + 2}}{1} = \frac{y}{{ - 2}} = \frac{z}{{ - 1}}\);
B. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\);
C. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{{ - 1}}\);
D. \(\frac{{x - 2}}{2} = \frac{y}{{ - 4}} = \frac{z}{{ - 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \(\frac{{x - 2}}{{ - 2}} = \frac{{y + 3}}{4} = \frac{{z - 6}}{3}\);
B. \(\frac{{x + 2}}{2} = \frac{{y - 4}}{{ - 3}} = \frac{{z - 3}}{6}\);
C. \(\frac{{x + 2}}{{ - 2}} = \frac{{y - 3}}{4} = \frac{{z + 6}}{3}\);
D. \(\frac{{x - 2}}{2} = \frac{{y + 4}}{{ - 3}} = \frac{{z + 3}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.