Bài tập ôn tập Toán 12 Cánh diều Chương 1 có đáp án
63 người thi tuần này 4.6 63 lượt thi 55 câu hỏi
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
\(\left( {3; + \infty } \right)\).
\(\left( {1;3} \right)\).
\(\left( { - \infty ;4} \right)\).
\(\left( {0; + \infty } \right)\).
Lời giải
Chọn A
Căn cứ vào BBT ta thấy: Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\).
Câu 2
\[\left( {0\,;1} \right)\].
\[\left( { - 1;0} \right)\].
\[\left( {1; + \infty } \right)\].
\[\left( {0; + \infty } \right)\].
Lời giải
Chọn A
Hàm số đã cho nghịch biến trên khoảng \[\left( {0\,;1} \right)\].
Câu 3
Hàm số nghịch biến trên các khoảng \[\left( { - \infty ;1} \right)\]và \[\left( {1; + \infty } \right)\].
Hàm số đồng biến trên các khoảng \[\left( { - \infty ;1} \right)\]\[ \cup \]\[\left( {1; + \infty } \right)\].
Hàm số đồng biến trên các khoảng \[\left( { - \infty ;1} \right)\]và \[\left( {1; + \infty } \right)\].
Hàm số nghịch biến trên các khoảng \[\left( { - \infty ; - 1} \right)\] và \[\left( { - 1; + \infty } \right)\].
Lời giải
Chọn A
Ta có \[y = \frac{{x + 2}}{{x - 1}} \Rightarrow y' = \frac{{ - 3}}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\].
Do đó hàm số nghịch biến trên các khoảng \[\left( { - \infty ;1} \right)\]và \[\left( {1; + \infty } \right)\].
Câu 4
\[f\left( 0 \right) > f\left( 1 \right)\].
\[f\left( 2 \right) < f\left( 3 \right)\].
\[f\left( { - 1} \right) = f\left( 1 \right)\].
\[f\left( { - 1} \right) > f\left( 3 \right)\].
Lời giải
Chọn B
Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng \[\left( {1;3} \right)\] cho nên \[f\left( 2 \right) < f\left( 3 \right)\].
Câu 5
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
\[ - 8\].
\[5\].
\[3\].
\[1\].
Lời giải
Chọn B
Dựa vào bảng biến thiên của hàm số \[f\left( x \right)\].
Hàm số đạt cực tiểu tại \[x = 3 \Leftrightarrow f\left( x \right) = 5\].
Câu 6
\(6\).
\(3\).
\(1\).
\(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(x = 3\).
\[x = - 2\].
\(x = 4\).
\(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
\[ - 1\].
\[4\].
\[ - 2\].
\[3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
\(1\).
\( - 2\).
\(0\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Hàm số đồng biến trên \(\left( { - \infty ;1} \right)\) và nghịch biến trên \(\left( {1; + \infty } \right)\).
Hàm số nghịch biến trên \(\mathbb{R}\).
Hàm số nghịch biến trên \(\left( { - \infty ;1} \right)\) và đồng biến trên \(\left( {1; + \infty } \right)\).
Hàm số đồng biến trên \(\mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).
Hàm số đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
\(5\).
\(\frac{1}{3}\).
\( - \frac{1}{3}\).
\( - 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
\(1\).
\(0\).
\( - \frac{4}{3}\).
\(\frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
Đường thẳng \[x = 0\] và \[x = - 1\] là tiệm cận đứng của đồ thị hàm số.
Đồ thị hàm số không có tiệm cận đứng.
Đồ thị hàm số có duy nhất đường tiệm cận đứng là \[x = 0\].
Đồ thị hàm số có duy nhất đường tiệm cận đứng là \[x = - 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
\(y = 2\).
\(y = \frac{3}{4}\).
\(y = - 3\).
\(x = - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
\(\left( C \right)\) không có tiệm cận ngang.
\(\left( C \right)\) có hai tiệm cận đứng.
\(\left( C \right)\) không có tiệm cận đứng.
\(\left( C \right)\)có một tiệm cận ngang và một tiệm cận đứng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
\[y = 1\].
\[x = 1\].
\[x = \frac{1}{2}\].
\[y = \frac{1}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 23
\(x = 2\).
\(x = 0\).
\(y = 1\).
\(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 24
\(y = x\).
\(y = x - 1\).
\(y = 2x - 1\).
\(y = x + 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 25
\(y = \frac{{x - 1}}{{x + 1}}\).
\(y = \frac{{2x - 1}}{{x - 1}}\).
\(y = \frac{{x + 2}}{{x - 1}}\).
\(y = \frac{{3x - 1}}{{x + 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 26
\(y = - {x^3} + 3x - 1\).
\(y = {x^3} + 3x + 1\).
\(y = {x^3} - 3x + 1\).
\(y = - {x^3} - 3x + 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 27
\(\left( {0;1} \right)\).
\(\left( {1;0} \right)\).
\(\left( {0; - 1} \right)\).
\(\left( {1;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 28
\[y = {x^3} - 3x - 1\].
\[y = - {x^4} + 2{x^2} - 1\].
\[{x^4} - 2{x^2} - 1\].
\[y = - {x^3} + 3x - 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 30
\(y = \frac{{x + 2}}{{x - 2}}\).
\(y = - {x^3} + 3{x^2} - 1\).
\(y = \frac{{x - 1}}{{x - 2}}\).
\(y = {x^4} - 3{x^2} + 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.