12 bài tập Một số bài toán liên quan đến tính đơn điệu, cực trị có chứa tham số có đáp án
53 người thi tuần này 4.6 111 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. 27;
B. 35;
C. 44;
D. 54.
Lời giải
Đáp án đúng là: C
y = x3 − 3x2 +3(m + 2)x + 3m – 2025
Hàm số đã cho xác định trên D = ℝ.
Để hàm số đồng biến trên ℝ y' = 3x2 – 6x + 3(m + 2) ≥ 0, ∀x ∈ ℝ
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta ' \le 0}\end{array}{\rm{ }} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 > 0{\rm{ }}}\\{9 - 9(m + 2) \le 0}\end{array} \Leftrightarrow m \ge - 1{\rm{ }}} \right.} \right.\].
Vậy m ≥ −1 thì hàm số đồng biến trên ℝ.
Do m ∈ [−10; 10), m ∈ ℤ nên tổng các giá trị nguyên của tham số là 44.
Câu 2
A. \(P = \frac{9}{4}\);
B. \(P = \frac{{13}}{2}\);
C. P = 4;
D. \(P = \frac{{13}}{4}\).
Lời giải
Đáp án đúng là: B
Hàm số đã cho xác định trên D = ℝ.
Để hàm số đồng biến trên ℝ y' = 3x2 – 2(2m – 1)x + (2 – m) ≥ 0, ∀x ∈ ℝ\[ \Leftrightarrow \left\{ \begin{array}{l}a = 3 > 0\\\Delta ' = {\left( {2m - 1} \right)^2} - 3\left( {2 - m} \right) = 4{m^2} - m - 5 \le 0\end{array} \right. \Leftrightarrow - 1 \le m \le \frac{5}{4}\].
Vậy \[ - 1 \le m \le \frac{5}{4}\] thì hàm số đồng biến trên ℝ.
Do \(m \in \left[ {a;\frac{b}{c}} \right]\) nên \(\left\{ \begin{array}{l}a = - 1\\b = 5\\c = 4\end{array} \right. \Rightarrow P = \frac{{{a^2} + {b^2}}}{c} = \frac{{13}}{2}\).
Câu 3
A. (−∞; 1];
B. (−∞; 4];
C. (−∞; 1);
D. (−∞; 4).
Lời giải
Đáp án đúng là: B
Ta có y' = 3x2 – 6x + 4 – m.
Yêu cầu bài toán y' ≥ 0, ∀x ∈ (2; +∞)
3x2 – 6x + 4 – m ≥ 0, ∀x ∈ (2; +∞)
m ≤ 3x2 – 6x + 4, ∀x ∈ (2; +∞)
m ≤ \(\mathop {\min }\limits_{\left( {2; + \infty } \right)} g\left( x \right)\) với g(x) = 3x2 – 6x + 4.
Ta có g'(x) = 6x – 6; g'(x) = 0 6x – 6 = 0 x = 1.
Dựa vào bảng biến thiên, suy ra: m ≤ 4 thỏa yêu cầu bài toán.
Vậy: m ∈ (−∞; 4] thì hàm số đồng biến trên khoảng (2; +∞).
Lời giải
Đáp án đúng là: C
Yêu cầu bài toán y' = −3x3 + 9x – 2m – 15 ≤ 0, ∀x ∈ (0; +∞) và dấu bằng xảy ra tại hữu hạn điểm thuộc (0; +∞) 3x3 − 9x + 15 ≥ – 2m, ∀x ∈ (0; +∞).
Xét hàm số g(x) = 3x3 − 9x + 15 trên (0; +∞).
Ta có: g'(x) = 9x2 – 9; g'(x) = 0 x = 1 hoặc x = −1 (loại).
Bảng biến thiên:
Từ bảng biến thiên ta có: \( - 2m \le 9 \Leftrightarrow m \ge - \frac{9}{2}\).
Vậy m ∈ {−4; −3; −2; −1}.
Lời giải
Đáp án đúng là: B
Tập xác định: D = ℝ\{−4}.
Ta có \(y' = \frac{{4 - {m^2}}}{{{{\left( {x + 4} \right)}^2}}}.\)
Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi \(y' > 0\;\forall x \in D \Leftrightarrow \frac{{4 - {m^2}}}{{{{\left( {x + 4} \right)}^2}}} > 0\;\forall x \ne - 4 \Leftrightarrow - 2 < m < 2.\)
Vì m ∈ ℤ m ∈ {−1; 0; 1}.
Vậy có 3 giá trị m nguyên để bài toán thỏa mãn.
>Câu 6
A. P = −4;
B. P = 4;
C. P = −3;
D. P = −5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 2038;
B. 2020;
C. 2018;
D. 2021.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. 47;
B. 44;
C. 46;
D. 45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. ab ≤ 0;
B. ab < 0;
>C. ab > 0;
D. ab ≥ 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. m ∈ (−∞; 6) ∪ (0; +∞);
B. m ∈ (−6; 0);
C. m ∈ [−6; 0);
D. m ∈ [−6; 0].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.