Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 8 có đáp án (Đề 1)
15 người thi tuần này 4.6 20 lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
Lời giải
Có \(A_5^3\) số tự nhiên có 3 chữ số khác nhau lấy từ tập \(A\). Chọn D.
Câu 2
Lời giải
Số cách chọn 2 viên bi xanh là \(C_6^2 = 15\) cách.
Số cách chọn 2 viên bi đỏ là \(C_5^2 = 10\) cách.
Vậy số cách chọn 2 viên bi cùng màu là \(15 + 10 = 25\) cách. Chọn A.
Câu 3
Lời giải
Số cách xếp là \(7! = 5040\). Chọn B.
Câu 4
Lời giải
\({\left( {2x + 1} \right)^4} = {\left( {2x} \right)^4} + 4 \cdot {\left( {2x} \right)^3} \cdot 1 + 6 \cdot {\left( {2x} \right)^2} \cdot {1^2} + 4 \cdot \left( {2x} \right) \cdot {1^3} + {1^4}\)
\( = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\).
Suy ra \({a_4} + {a_3} + {a_2} + {a_1} + {a_0} = 16 + 32 + 24 + 8 + 1 = 81\). Chọn D.
Câu 5
Lời giải
Số cách để hoàn thành công việc là \(m \cdot n\) cách. Chọn D.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \({a_1} = 1;{a_2} = - 12\).
b) Hệ số của số hạng \({x^6}{y^2}\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là 54.
c) Số hạng chứa \({x^7}y\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là \(12{x^7}y\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
a) Số cách chọn 4 bông tùy ý là 126 cách.
b) Số cách chọn 5 bông, trong đó có đủ hai màu và số bông hồng nhiều hơn bông trắng là 30 cách.
c) Số cách chọn 4 bông hoa có đủ hai màu là 120 cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.