10 Bài tập Mệnh đề phủ định (có lời giải)
40 người thi tuần này 4.6 460 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
A. Mọi số tự nhiên có hai chữ số đều chia hết cho 11;
B. Có ít nhất một số tự nhiên có hai chữ số không chia hết cho 11;
C. Mọi số tự nhiên có hai chữ số đều không chia hết cho 11;
D. Có một số tự nhiên có hai chữ số chia hết cho 11.
Lời giải
Đáp án đúng là: C.
Ta có:
Phủ định của “có ít nhất” là “mọi”.
Phủ định của “chia hết” là “không chia hết”.
Vậy mệnh đề phủ định của mệnh đề đã cho là: “Mọi số tự nhiên có hai chữ số đều không chia hết cho 11”.
Câu 2
A. ∀x ∈ ℝ, x2 – 2x + 15 > 0;
B. ∀x ∈ ℝ, x2 – 2x + 15 ≥ 0;
C. Không tồn tại x: x2 – 2x + 15 < 0;
D. ∃x ∈ ℝ, x2 – 2x + 15 ≥ 0.
Lời giải
Đáp án đúng là: D.
Ta có:
– Mệnh đề phủ định của “∀x ∈ X; P(x)” là “∃x ∈ X; ”.
– Phủ định của quan hệ < là quan hệ ≥.
Vậy mệnh đề phủ định của mệnh đề A là: ∃x ∈ ℝ, x2 – 2x + 15 ≥ 0.
Câu 3
A. ∀x: x2 + 2x + 3 không là số chính phương;
B. ∃x: x2 + 2x + 3 là số nguyên tố;
C. ∀x: x2 + 2x + 3 là hợp số;
D. ∃x: x2 + 2x + 3 là số thực.
Lời giải
Đáp án đúng là: A.
Ta có:
Phủ định của ∃ là ∀.
Phủ định của “là số chính phương” là “không là số chính phương”.
Vậy mệnh đề phủ định của mệnh đề P là: “∀x: x2 + 2x + 5 không là số chính phương”.
Câu 4
A. Mọi hệ phương trình đều có nghiệm;
B. Tất cả các hệ phương trình đều có nghiệm;
C. Có ít nhất một hệ phương trình có nghiệm;
D. Có duy nhất một hệ phương trình có nghiệm.
Lời giải
Đáp án đúng là: C.
Ta có:
Phủ định của “mọi” là “có ít nhất”.
Phủ định của “vô nghiệm” là “có nghiệm”.
Vậy mệnh đề phủ định của mệnh đề đã cho là: “Có ít nhất một hệ phương trình có nghiệm”.
Câu 5
A. ∃x ∈ ℝ, x3 – 3x2 +1 ≠ 0;
B. ∀x ∈ ℝ, x3 – 3x2 +1 = 0;
C. ∀x ∈ ℝ, x3 – 3x2 +1 ≠ 0;
D. ∃x ∈ ℝ, x3 – 3x2 +1 < 0.
Lời giải
Đáp án đúng là: C.
Ta có:
Phủ định của ∃ là ∀.
Phủ định của = là ≠.
Vậy mệnh đề phủ định của mệnh đề P là: “∀x ∈ ℝ, x3 – 3x2 + 1 ≠ 0”.
Câu 6
A. Phủ định của mệnh đề “∀x ∈ ℝ, ” là mệnh đề “∀x ∈ ℝ, ”;
B. Phủ định của mệnh đề “∀k ∈ ℤ, k2 + k + 1 là một số lẻ” là mệnh đề “∃k ∈ ℤ, k2 + k + 1 là một số chẵn”;
C. Phủ định của mệnh đề “∀n ∈ ℕ sao cho n2 – 1 chia hết cho 24” là mệnh đề “ ∀n ∈ ℕ sao cho n2 – 1 không chia hết cho 24”;
D. Phủ định của mệnh đề “∀x ∈ ℚ, x3 – 3x + 1 > 0” là mệnh đề “∀x ∈ ℚ, x3 – 3x + 1 ≤ 0”.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Phương trình x2 – 6x + 9 = 0 vô nghiệm. Đây là mệnh đề đúng;
B. Phương trình x2 – 6x + 9 = 0 vô nghiệm. Đây là mệnh đề sai;
C. Phương trình x2 – 6x + 9 = 0 có nghiệm. Đây là mệnh đề đúng;
D. Phương trình x2 – 6x + 9 = 0 có nghiệm. Đây là mệnh đề sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. ∀x ∈ ℝ: x2 > 0;
B. ∃x ∈ ℝ: x2 ≤ 0;
C. ∀x ∈ ℝ: x2 ≤ 0;
D. ∃x ∈ ℝ: x2 > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. "∀x ∈ ℝ: x < x + 2";
B. "∀n ∈ ℕ: 3n ≥ n";
C. "∃x ∈ ℚ: x2 = 5";
D. "∃x ∈ ℝ: x2 – 3 = 2x".
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. Số 15 chia hết cho 5 hoặc 3;
B. Số 15 không chia hết cho 5 và 3;
C. Số 15 không chia hết cho 5 hoặc 3;
D. Số 15 không chia hết cho 5 và chia hết cho 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.