10 bài tập Một số bài toán hàm hợp liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của hàm số của hàm có lời giải
42 người thi tuần này 4.6 85 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. M – 2m = 5;
B. M – 2m = 3;
C. M – 2m = 6;
D. M – 2m = 7.
Lời giải
Đáp án đúng là: A
Ta có −1 ≤ cos5x ≤ 1 −1 ≤ 2cos5x + 1 ≤ 3.
Đặt t = 2cos5x + 1 với x ∈ [−2; 3] thì t ∈ [−1; 3].
Khi đó, y = f(2cos5x + 1) = f(t) với t ∈ [−1; 3].
Suy ra: M = 5; m = 0 M – 2m = 5.
Câu 2
A. 1;
B. 2;
C. 3;
D. 5.
Lời giải
Đáp án đúng là: D
Xét hàm số g(x) = x3 – 3x2 – 1; g'(x) = 3x2 – 6x.
Có g'(x) = 0 x = 0 hoặc x = 2 (đều thuộc (−1; 3)).
Ta có f(−1) = |g(−1)| = 5; f(0) = |g(0)| = 1; f(2) = |g(2)| = 5; f(3) = |g(3)| = 1.
Vậy \(\mathop {\max }\limits_{\left[ { - \,1;3} \right]} f\left( x \right) = 5\).
Câu 3
A. g(1);
B. g(2);
C. g(3);
D. g(0).
Lời giải
Đáp án đúng là: D
Ta có bảng biến thiên của hàm số y = f(x)
Ta có: g'(x) = −2f'(−2x + 3).
Có g'(x) = 0 \( \Leftrightarrow \left[ \begin{array}{l} - 2x + 3 = - 3\\ - 2x + 3 = 1\\ - 2x + 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\\x = 0\end{array} \right.\)
Ta có x = 1 là nghiệm bội chẵn nên ta có bảng biến thiên của hàm số g(x).
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số g(x) trên đoạn [0; 3] là g(0).
Câu 4
A. M.m > 10;
B. \[\frac{M}{m} < 2\];
C. M – m > 3;
D. M + m > 7.
Lời giải
Đáp án đúng là: B
Đặt t = x2 – 2x. Ta có \[x \in \left[ { - \frac{3}{2};\frac{7}{2}} \right] \Leftrightarrow - \frac{5}{2} \le x - 1 \le \frac{5}{2} \Leftrightarrow 0 \le {\left( {x - 1} \right)^2} \le \frac{{25}}{4}\]
\[ \Leftrightarrow - 1 \le {\left( {x - 1} \right)^2} - 1 \le \frac{{21}}{4}\] nên \[t \in \left[ { - 1;\frac{{21}}{4}} \right]\].
Xét hàm số \[y = f\left( t \right),t \in \left[ { - 1;\frac{{21}}{4}} \right]\]
Từ bảng biến thiên suy ra:
\(m = \mathop {\min }\limits_{t \in \left[ { - 1;\frac{{21}}{4}} \right]} f\left( t \right) = f\left( 1 \right) = 2,M = \mathop {\max }\limits_{t \in \left[ { - 1;\frac{{21}}{4}} \right]} f\left( t \right) = f\left( {\frac{{21}}{4}} \right) = 5 \Rightarrow \frac{M}{m} > 2\).
Lời giải
Đáp án đúng là: A
Đặt \(t = \sqrt {2x - {x^2}} \), ta có \(0 \le t \le 1\).
Hàm số \(y = \sqrt {2x - {x^2}} \) trở thành y = f(t) với 0 ≤ t ≤ 1.
Dựa vào đồ thị ta suy ra M = −3; m = −5.
Vậy 2M – m = −1.
Câu 6
A. 1;
B. 2;
C. \(\frac{1}{2}\);
D. \(\frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. T = 2019;
B. T = 0;
C. T = 4038;
D. T = 2692.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. f(2);
B. f(0);
C. f(4);
D. Không xác định được.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.