5 câu Trắc nghiệm Toán 10 chân trời sáng tạo Bất phương trình bậc nhất hai ẩn có đáp án (Vận dụng)
23 người thi tuần này 4.6 2.1 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Do điểm A(\(\sqrt 2 \); 1) thuộc miền nghiệm của bất phương trình, thay x = \(\sqrt 2 \) và y = 1 vào bất phương trình ta được:
\(3\sqrt 2 + m - 7 \ge 0 \Leftrightarrow m \ge 7 - 3\sqrt 2 \)
Vậy với \(m \in \left[ {7 - 3\sqrt 2 ; + \infty } \right)\) thì bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1).
Ta chọn phương án D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có: 2x − 3(y − x) > 4 ⇔ 2x – 3y + 3x – 4 > 0 ⇔ 5x – 3y – 4 > 0.
Do điểm A(1 − m; m) không thuộc miền nghiệm của bất phương trình nên thay tọa độ điểm A vào bất phương trình trên không thoả mãn hay điểm A thuộc miền nghiệm của bất phương trình 5x – 3y – 4 ≤ 0.
Khi đó ta có: 5(1 – m) – 3m – 4 ≤ 0
⇔ 5 – 5m – 3m – 4 ≥ 0
⇔ –8m ≥ –1
⇔ m ≤ \(\frac{1}{8}\)
Ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Thời gian tối đa để hoàn thiện:
+ Kệ sách là: 240 : 4 = 60 giờ.
+ Bàn: 240 : 3 = 80 giờ.
Khi đó ta có:

Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Điểm A là giao điểm của parabol (P) y = x2 và đường thẳng y = 5x – 4 nên hoành độ của điểm A là nghiệm của phương trình:
x2 = 5x – 4 Û x2 – 5x + 4 = 0 Û \(\left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\)
Khi đó ta được hai điểm (1; 1) và (4; 16).
Xét điểm (1; 1) ta có: 2.1 + 1 – 6 = –3 < 0 nên (1; 1) là nghiệm của bất phương trình (1) do đó điểm A(1; 1) thuộc miền nghiệm của bất phương trình (1).
Xét điểm (4; 16) ta có: 2.4 + 16 – 6 = 18 > 0 nên (4; 16) không là nghiệm của bất phương trình (1) do đó điểm (4; 16) không thuộc miền nghiệm của bất phương trình (1).
Vậy có 1 điểm A(1; 1) thỏa mãn.
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Để sản xuất một đơn vị sản phẩm loại I thì cần 2 máy nhóm A và 2 máy nhóm C nên để sản xuất x đơn vị sản phẩm loại I thì cần 2x máy nhóm A và 2x máy nhóm C.
Để sản xuất một đơn vị sản phẩm loại II thì cần 2 máy nhóm A, 2 máy nhóm B và 4 máy nhóm C nên để sản xuất y đơn vị sản phẩm loại II thì cần 2y máy nhóm A, 2y máy nhóm B và 4y máy nhóm C.
Mà có tất cả 10 máy nhóm A nên ta có: 2x + 2y ≤ 10 Û x + y – 5 ≤ 0.
Có tất cả 4 máy nhóm B nên ta có: 2y ≤ 4 Û y ≤ 2.
Có tất cả 12 máy nhóm C nên ta có: 2x + 4y ≤ 12 Û x + 2y – 6 ≤ 0.
Vậy ta có các bất phương trình:
x ≥ 0;
0 ≤ y ≤ 2;
x + y – 5 ≤ 0;
x + 2y – 6 ≤ 0.
Ta chọn phương án D.



