8 câu Trắc nghiệm Toán 10 chân trời sáng tạo Dấu của tam thức bậc hai (Thông hiểu) có đáp án
27 người thi tuần này 4.6 2.2 K lượt thi 8 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. f(–2) < 0;
B. f(1) > 0;
C. f(–2) > 0;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
⦁ f(1) = 12 – 10.1 + 2 = –7 < 0.
Do đó phương án B, D sai.
⦁ f(–2) = (–2)2 – 10.(–2) + 2 = 26 > 0.
Do đó phương án C đúng, phương án A sai.
Vậy ta chọn phương án C.
Câu 2
A. f(x) < 0, ∀x ∈ ℝ;
B. f(x) ≥ 0, ∀x ∈ ℝ;
C. f(x) ≤ 0, ∀x ∈ ℝ;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Tam thức bậc hai f(x) = –2x2 + 8x – 8 có ∆ = 82 – 4.(–2).(–8) = 0.
Suy ra f(x) có nghiệm kép .
Ta có a = –2 < 0.
Do đó f(x) < 0 với mọi x ≠ 2
Hay f(x) ≤ 0 với mọi x ∈ ℝ.
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai f(x) = 6x2 + 37x + 6 có ∆ = 372 – 4.6.6 = 1225 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
;
Ta có a = 6 > 0.
Ta có bảng xét dấu f(x) như sau:

Vậy ta chọn phương án B.
Câu 4
A. Phương trình f(x) = 0 vô nghiệm;
B. f(x) > 0, ∀x ∈ ℝ;
C. f(x) ≥ 0, ∀x ∈ ℝ;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Tam thức bậc hai f(x) = x2 – 8x + 16 có ∆ = (–8)2 – 4.1.16 = 0.
Do đó f(x) có nghiệm kép .
Khi đó phương án A sai.
Ta có a = 1 > 0.
Vì vậy f(x) > 0 với mọi x ≠ 4 hay f(x) ≥ 0, với mọi x ∈ ℝ.
Do đó phương án B và D sai; phương án C đúng.
Vậy ta chọn phương án C.
Câu 5
A. f(x) > 0 ⇔ x ∈ (–∞; +∞);
B. f(x) = 0 ⇔ x = –1;
C. f(x) < 0 ⇔ x ∈ (–∞; 1);
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = x2 + 1 có ∆ = 02 – 4.1.1 = –4 < 0.
Suy ra f(x) vô nghiệm.
Ta có a = 1 > 0.
Vậy f(x) > 0, ∀x ∈ ℝ hay f(x) > 0 ⇔ x ∈ (–∞; +∞).
Ta chọn phương án A.
Câu 6
A. a > 0, ∆ > 0;
B. a < 0, ∆ > 0;
C. a > 0, ∆ = 0;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. f(x) = x2 – 10x + 2;
B. f(x) = x2 – 2x + 1;
C. f(x) = x2 – 2x + 10;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.









