7 câu Trắc nghiệm Toán 10 chân trời sáng tạo Phương trình quy về phương trình bậc hai (Vận dụng) có đáp án
24 người thi tuần này 4.6 1.2 K lượt thi 7 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có .
.
Bình phương hai vế của phương trình trên, ta được:
x2 – 3x – 4 = 4(x + 1)2
⇒ x2 – 3x – 4 = 4(x2 + 2x + 1)
⇒ 3x2 + 11x + 8 = 0
⇒ x = –1 hoặc .
Với x = –1, ta có (vô lý)
Với , ta có (đúng)
Vì vậy khi thay lần lượt các giá trị x = –1 và vào phương trình đã cho, ta thấy chỉ có thỏa mãn.
Vậy phương trình đã cho có nghiệm là .
Khi đó a = –8 và b = 3 (do b > 0).
Suy ra a2 – b2 = (–8)2 – 32 = 55.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Phương trình hoành độ giao điểm của hai đồ thị là:
Bình phương hai vế của phương trình đã cho, ta được 16(2x2 – 3x + 1) = 9x2 + 54x + 81
⇒ 23x2 – 102x – 65 = 0
⇒ x = 5 hoặc .
Khi thay x = 5 và vào phương trình đã cho, ta thấy cả x = 5 và đều thỏa mãn.
Với x = 5, ta có .
Suy ra tọa độ giao điểm A(5; 24).
Với , ta có .
Suy ra tọa độ giao điểm .
Vậy hai đồ thị có hai giao điểm là A(5; 24) và .
Ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có
(1)
Đặt , t ≥ 0.
Phương trình (1) tương đương với:
Bình phương hai vế của phương trình trên, ta được:
t2 – 2t + 3 = t2 – 6t + 8
⇒ 4t = 5
⇒ (nhận)
Với , ta có (đúng)
Vì vậy khi thay vào phương trình , ta thấy thỏa mãn.
Với , ta có .
Bình phương hai vế phương trình trên, ta được .
⇒ (vô nghiệm)
Vậy phương trình đã cho vô nghiệm.
Khi đó tập nghiệm của phương trình ban đầu là: ∅.
Ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình hoành độ giao điểm của hai đồ thị là: .
Bình phương hai vế của phương trình trên, ta được 3x – 4 = (x – 3)2
⇒ 3x – 4 = x2 – 6x + 9
⇒ x2 – 9x + 13 = 0
⇒ hoặc .
Với , ta có (đúng)
Với , ta có (sai)
Vì vậy khi thay lần lượt và vào phương trình , ta thấy chỉ có thỏa mãn.
Vậy hai đồ thị cắt nhau tại một giao điểm.
Do đó ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có
⇔ x – 2 = 0 hoặc
⇔ x = 2 hoặc (2)
Giải (2):
Bình phương hai vế của phương trình (2), ta được:
2x + 7 = (x + 2)2
⇒ 2x + 7 = x2 + 4x + 4
⇒ x2 + 2x – 3 = 0
⇒ x = 1 hoặc x = –3.
Với x = 1, ta có (đúng)
Với x = –3, ta có (sai)
Vì vậy khi thay lần lượt các giá trị x = 1 và x = –3 vào phương trình (2), ta thấy chỉ có x = 1 thỏa mãn.
Do đó phương trình (2) có nghiệm là x = 1.
Vậy phương trình đã cho có nghiệm là x = 2 hoặc x = 1.
Khi đó tổng bình phương các nghiệm của phương trình đã cho là: 22 + 12 = 5.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.