5 câu Trắc nghiệm Toán 10 chân trời sáng tạo Ôn tập chương 1 có đáp án (Vận dụng)
23 người thi tuần này 4.6 2.1 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
⦁ Phương trình x2 + bx + c = 0 có nghiệm Û ∆ ≥ 0.
Û b2 – 4c ≥ 0.
Do đó phương án A đúng.
⦁ Nếu (hay a > b > c) thì a > c.
Do đó mệnh đề P Þ Q đúng (1)
Ta xét mệnh đề đảo Q Þ P: a > c .
Ta chọn a, b, c sao cho Q đúng.
Chọn a = 4; c = 2; b = 1.
Vì 4 > 2 nên ta suy ra a > c, tức là Q đúng.
Khi đó ta có 4 > 2 .
Lúc này P vô lý vì 1 < 2.
Do đó Q đúng và P sai.
Vì vậy mệnh đề đảo Q Þ P sai (2)
Từ (1), (2), ta suy ra phương án B sai.
Đến đây ta có thể chọn phương án B.
⦁ Nếu ∆ABC vuông tại A thì .
∆ABC có: (định lí tổng ba góc trong một tam giác).
Suy ra .
Vì vậy mệnh đề P Þ Q đúng (3)
Nếu thì:
∆ABC có: (định lí tổng ba góc trong một tam giác).
Suy ra .
Do đó ∆ABC vuông tại A.
Vì vậy mệnh đề Q Þ P đúng (4)
Từ (1), (2), ta suy ra P Û Q.
Do đó phương án C đúng.
⦁ Ta có π ≈ 3,14 < 4.
Suy ra π2 ≈ 9,87 < 16.
Do đó P Þ Q đúng (5)
Ngược lại, ta có π2 ≈ 9,87 < 16.
Suy ra π ≈ 3,14 < 4.
Do đó Q Þ P đúng (6)
Từ (5), (6), ta suy ra P Û Q.
Do đó phương án D đúng.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Lấy một phần tử của A ghép với n phần tử còn lại ta được n tập con có hai phần tử.
Vậy có (n + 1).n tập.
Nhưng mỗi tập con đó được tính hai lần do được lặp lại nên số tập con của A có hai phần tử là
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Để xác định tập hợp A \ B, ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy A \ B = [–2; 1) (vì tập B chứa số 1 nên phần bù sẽ không lấy số 1).
Để xác định tập hợp (A \ B) ∩ C, ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy (A \ B) ∩ C = [0; 1) (giao tức là lấy phần chung, tuy tập C có số 1 nhưng vì tập A \ B không lấy số 1 nên ta không lấy số 1).
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vì tập A khác rỗng nên ta có m – 1 < 4.
Û m < 5 (1)
Vì tập B khác rỗng nên ta có –2 < 2m + 2.
Û –4 < 2m.
Û m > –2 (2)
Từ (1) và (2), ta suy ra tập hợp A và B đều khác rỗng khi và chỉ khi –2 < m < 5 (*).
Để A ∩ B ≠ ∅ thì m – 1 < 2m + 2.
Nghĩa là, m > –3 (**).
Giao (*) và (**) lại với nhau, ta thu được kết quả –2 < m < 5.
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi T, L, K lần lượt là tập hợp các học sinh giỏi Toán, tập hợp các học sinh giỏi Lý và tập học các học sinh không giỏi môn nào cả.
Theo đề, ta có:
⦁ n(T) = 25;
⦁ n(L) = 23;
⦁ n(T ∩ L) = 14;
⦁ n(K) = 6.
Ta có sơ đồ Ven biểu diễn 3 tập hợp T, L, K như sau:
Khi đó số học sinh cả lớp là: n(T ∪ L) + n(K).
Ta có n(T ∪ L) = n(T) + n(L) – n(T ∩ L) = 25 + 23 – 14 = 34.
Vậy số học sinh cả lớp là: 34 + 6 = 40 (học sinh).
Do đó ta chọn phương án B.