Bộ 5 đề thi giữa kì 1 Toán 12 Cánh diều cấu trúc mới (có tự luận) có đáp án - Đề 4
33 người thi tuần này 4.6 687 lượt thi 21 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(\left( {2; + \infty } \right)\).
Lời giải
Lời giải
Từ đồ thị hàm số ta thấy hàm số \(y = f\left( x \right)\) đồng biến khoảng \(\left( {0\,;\,2} \right)\). Vậy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;1} \right)\). Chọn D.
Câu 2
A. \[0\].
Lời giải
Lời giải
Từ bảng biến thiên ta thấy giá trị cực đại của hàm số bằng \(5\). Chọn B.
Câu 3
A. \(\frac{{14}}{3}\).
Lời giải
Lời giải
Từ bảng biến thiên ta thấy giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 10;10} \right]\) là \( - 38\) tại \[x = - 3\].
Chọn B.
Câu 4
A. \(y = - 1\).
Lời giải
Lời giải
Đồ thị hàm số đã cho có đường tiệm cận đứng là \(x = - \frac{1}{3}\). Chọn D.
Câu 5
A. \(x = - \frac{1}{2}\).
Lời giải
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{2}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{2}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\).
Nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - x}}{{2x + 1}}\) là \(y = - \frac{1}{2}\). Chọn C.
Câu 6
A. \(\left( { - 1;\;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(\overrightarrow {CD} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \[45^\circ \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. \(y = \frac{{ - x + 2}}{{x - 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau: Giá trị cực đại của hàm số đã cho bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid1-1756171387.png)
![Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình dưới đây. Khi đó giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 10;10} \right]\) bằng bao nhiêu? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid2-1756171432.png)




![Cho hình lập phương\[ABCD.A'B'C'D'\]. Số đo góc \[\left( {\overrightarrow {BC} ,\overrightarrow {B'D'} } \right)\] bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid8-1756171733.png)
![Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ 1 \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau: Bảng biến thiên trên của hàm số nào trong các hàm số sau? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid10-1756171849.png)





