Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 7 có đáp án ( Đề 2)
9 người thi tuần này 4.6 28 lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\).
B. \(S = \left( { - 2;3} \right)\).
Lời giải
Dựa vào bảng xét dấu, ta có \(f\left( x \right) \le 0\)\( \Leftrightarrow x \in \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\). Chọn D.
Câu 2
Lời giải
Bình phương hai vế của phương trình ta được
\(2{x^2} + 7x + 1 = 3{x^2} + 4x - 9\)\( \Leftrightarrow {x^2} - 3x - 10 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 5\end{array} \right.\).
Thay lần lượt \(x = - 2;x = 5\) vào bất phương trình \(2{x^2} + 7x + 1 \ge 0\), ta thấy \(x = 5\) thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{ 5 \right\}\). Chọn D.
Câu 3
Lời giải
Xét tam thức bậc hai \(f\left( x \right) = {x^2} - 3x + 3\) có \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta = {\left( { - 3} \right)^2} - 4 \cdot 1 \cdot 3 = - 3 < 0\end{array} \right.\).
Suy ra \(f\left( x \right) = {x^2} - 3x + 3 > 0,\forall x \in \mathbb{R}\). Chọn D.
Câu 4
Lời giải
Bình phương hai vế của phương trình ta được
\({x^2} - 7x + 10 = {\left( {x - 4} \right)^2}\)\( \Rightarrow x - 6 = 0\)\( \Rightarrow x = 6\).
Thay \(x = 6\) vào phương trình ta thấy thỏa mãn.
Vậy \(x = 6\) là nghiệm của phương trình. Chọn C.
Câu 5
A. \(S = \left( { - \infty ; - 1} \right] \cup \left[ {5; + \infty } \right)\).
B. \(S = \left[ { - 5;1} \right]\).
Lời giải
Ta có \( - {x^2} + 4x + 5 \ge 0\)\( \Leftrightarrow - 1 \le x \le 5\).
Vậy \(S = \left[ { - 1;5} \right]\). Chọn C.
Câu 6
A. \(f\left( x \right) > 0,\forall x \in \left( { - \infty ; - 4} \right) \cup \left( {0; + \infty } \right)\).
B. \(f\left( x \right) \le 0,\forall x \in \left( { - 4;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(f\left( x \right)\) là một tam thức bậc hai.
b) \(f\left( 2 \right) = 1\).
c) \(f\left( x \right)\) có vô số nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
a) Cả ba số \(a,b,c\) đều dương.
b) \(f\left( x \right) \ge m,\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le - 4\).
c) \(f\left( x \right) \ge 0,\forall x \in \left[ { - 1;3} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


